252 resultados para Dummy saturation
Resumo:
The effects on photosynthesis of CO, and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350 ml m(-3)). and doubling the CO2 concentration (700 ml m(-3)) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700 ml m(-3) CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.
Resumo:
Decline of submersed macrophytes in Lake Donghu of China with the progress of eutrophication is assumedly due to low light stress by algae blooming. I conducted a laboratory experiment to study the impact of low-light stress on the growth of Potamogeton maackianus A. Been, a dominant submersed macrophyte of the lake before the 1970s. Plants were grown for six weeks in aquaria with Lake Donghu sediment and enriched water. Light delivered to aquaria was adjusted to simulate the typical Lake Donghu light intensities that exist at several water depths from 0.6m to 1.7m. Biomass growth of the plant was inversely related to light intensity at the simulated depths of greater than or equal to 1.0m (r = 0.96, p < 0.05, n=6) and was negative at the depths of greater than or equal to 1.4m. These results indicate that photosynthetic light saturation and compensation points of the plant in Lake Donghu should be ca. 0,9m and ca. 1.5m depths, respectively. Chlorophyll content, growth of main shoot, total shoot lengths and density of the plant all peaked at 1.2-1.3m simulated depths. These results indicate that P. maackianus responds to low light stress primarily by elongation of shoots, and increase of density. Its biomass growth and nutrient uptake rate did not correlate with the accelerated shoot growth. Below the light intensities of water deeper than 1.2-1.3m, shoot growth rate decreased. The flexible tolerant strategy of P. maackianus to low-light stress suggests that the disappearance of this plant from the lake was not mainly due to eutrophication-induced low-light stress.
Resumo:
Nutrient addition bioassays were conducted in 10 L carboys with water from a eutrophic farm pond. The four bioassay treatments each conducted in triplicate were control (no nutrients added), +N (160 mu mol L(-1) NH4Cl), +P (10 mu mol L(-1) KH2PO4), and N+P (160 mu mol L(-1) NH4Cl and 10 mu mol L(-1) KH2PO4). The size fractionated (0.2-0.8, 0.8-3, > 3 mu m) contents of the carboys were analyzed after 7 d for alkaline phosphatase activity (APA) and chlorophyll-a content. Chlorophyll data suggested P deficiency in ammonium and control mesocosms and no P deficiency with phosphate additions. Pond water also was collected in June, August, October, and March for measurement of APA. In water from the pond, the greatest V-max of APA usually was associated with microorganisms in the size classes between 0.8-3 mu m. In mesocosm experiments, the N+P treatment increased V-max of dissolved and particulate associated APA in the 0.2-0.8 mu m size range and in dissolved form. The V-max of APA in the largest size-fraction (> 3 mu m) increased markedly with P deficiency (+N treatment) and decreased in the P-enrichment treatment. The patterns of APA and chlorophyll associated with different size fractions often varied independently among different treatments and seasons and not always as a function of P deficiency, indicating the difficulty of attempting to normalize APA to phytoplankton biomass or chlorophyll. The Michaelis half saturation constant of APA in the pond water showed no strong trends with varied seasons or size fraction.
Resumo:
Ga1-xMnxAs films with exceptionally high saturation magnetizations of approximate to 100 emu/cm(3) corresponding to effective Mn concentrations of x(eff)approximate to 0.10 still have a Curie temperature T-C smaller than 195 K contradicting mean-field predictions. The analysis of the critical exponent beta of the remnant magnetization-beta = 0.407(5)-in the framework of the models for disordered/amorphous ferromagnets suggests that this limit on T-C is intrinsic and due to the short range of the ferromagnetic interactions resulting from the small mean-free path of the holes. This result questions the perspective of room-temperature ferromagnetism in highly doped GaMnAs.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
A traveling-wave electroabsorption modulator with a large optical cavity and intrastep quantum wells
Resumo:
This paper reports a novel traveling-wave electroabsorption modulator (TWEAM) with a large optical cavity waveguide and an intrastep quantum well structure designed to achieve a high bandwidth, high saturation power and better fiber-matched optical profile, which is good for high coupling efficiency. The optical mode characteristic shows a great improvement in matching the circular mode of the fiber and the saturation power of 21 dBm, and a 3 dB bandwidth of 23 GHz was achieved for the fabricated TWEAM.
Resumo:
AlInN/GaN thin films were implanted with Mn ions and subsequently annealed isochronically at 750 and 850 degrees C. X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques were employed to study the microstructural properties of the implanted/annealed samples. The effect of annealing on implantation-induced strain in thin films has been studied in detail. The strain was found to increase with dose until it reached a saturation value and after that it started decreasing with a further increase in the dose. RBS measurements indicated the atomic diffusion of In, Al, Ga and Mn in implanted samples. The in- and out-diffusion of atoms has been observed after annealing at 750 degrees C and 850 degrees C, respectively. Strong decomposition of the samples took place when annealed at 850 degrees C.
Resumo:
By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.
Resumo:
(110) ZnO/(001) Nb-1 wt %-doped SrTiO3 n-n type heteroepitaxial junctions were fabricated using the pulse laser deposition method. A diodelike current behavior was observed. Different from conventional p-n junctions or Schottky diodes, the diffusion voltage was found to increase with temperature. At all temperatures, the forward current was perfectly fitted on the thermionic emission model. The band bending at the interface can qualitatively explain our results, and the extracted high ideality factor at low temperatures, as well as large saturation currents, is ascribed to the deep-level-assisted tunneling current through the junction. (C) 2008 American Institute of Physics.
Resumo:
A novel Y-branch based monolithic transceiver with a superluminescent diode and a waveguide photodiode (Y-SDL-PD) is designed and fabricated by the method of bundle integrated waveguide (BIG) as the scheme for monolithic integration and angled Y-branch as the passive bi-directional waveguide. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10mW at 120mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than 1 dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x 8 degrees, resulting in good fibre coupling.
Resumo:
The shape of truncated square-based pyramid quantum dots (QDs) is similar to that of real QDs in experiments. The electronic band structures and optical gain of InAs1-xNx/GaAs QDs are calculated by using the 10-band k.p model, and the strain is calculated by the valence force field (VFF) method. When the top part of the QD is truncated, greater truncation corresponds to a flatter shape of the QD. The truncation changes the strain distribution and the confinement in the z direction. A flatter QD has a greater C1-HH1 transition energy, greater transition matrix element, less detrimental effect of higher excited transition, and higher saturation gain and differential gain. The trade-off between these properties must be considered. From our results, a truncated QD with half of its top part removed has better overall performance. This can provide guidance to growing QDs in experiments in which the proper growing conditions can be controlled to achieve required properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The structural and magnetic properties of Sm ion-implanted GaN with different Sm concentrations are investigated. XRD results do not show any peaks associated with second phase formation. Magnetic investigations performed by superconducting quantum interference device reveal ferromagnetic behavior with an ordering temperature above room temperature in all the implanted samples, while the effective magnetic moment per Sm obtained from saturation magnetization gives a much higher value than the atomic moment of Sm. These results could be explained by the phenomenological model proposed by Dhar et al. [Phys. Rev. Lett. 94(2005) 037205, Phys. Rev. B 72(2005) 245203] in terms of a long-range spin polarization of the GaN matrix by the Sm atoms.
Resumo:
Optical bistability is reported in InP/GaInAsP equilateral-triangle-resonator (ETR) microlasers, which are fabricated by planar technology. For a 30 mu m side ETR microlaser with a 2-mu m-wide output waveguide connected to one of the vertices of the ETR, hysteresis loops are observed for the output power versus the injection current from 215 to 235 K. The laser output spectra are measured in the upper and lower states of the hysteresis loop, which show strong mode competition among transverse modes. The hysteresis loops are demonstrated by two-mode rate equations with asymmetric cross gain saturation and different output efficiencies. (C) 2009 Optical Society of America
Resumo:
A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF) bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.
Resumo:
Ferromagnetic properties of Mn-implanted wurtzite AlxIn1-xN/GaN thin films grown by metal organic chemical vapor deposition (MOCVD) were observed using a quantum design superconducting quantum interference device (SQUID) magnetometer. Hysteresis behavior with a reasonably high saturation magnetic moment at room temperature for all the samples was noted, Two optical thresholds were observed at 1.58 and 2.64 eV, which are attributed to internal transition (E-5 -> T-5(2)) of Mn3+ (d(4)) and hole emission from the neutral Mn acceptor level to the valence band respectively. Bound magnetic polaron formation is considered to be the origin of ferromagnetism in our samples. (c) 2009 The Japan Society of Applied Physics