117 resultados para traps
Resumo:
N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio (PVR) is observed in a GaAs-based modulation-doped field effect transistor (MODFET) with InAs quantum dots (QDs) in the barrier layer (QDFET) compared with a GaAs MODFET. The NDR is explained as the real-space transfer (RST) of high-mobility electrons in a channel into nearby barrier layers with low mobility, and the PVR is enhanced dramatically upon inserting the QD layer. It is also revealed that the QD layer traps holes and acts as a positively charged nano-floating gate after a brief optical illumination, while it acts as a negatively charged nano-floating gate and depletes the adjacent channel when charged by the electrons. The NDR suggests a promising application in memory or high-speed logic devices for the QDFET structure.
Resumo:
川西亚高山针叶林是四川森林的主体,是长江上游重要的生态屏障。云杉作为亚高山针叶林人工更新的主要树种,已经在该地区形成了大面积的人工纯林。目前,许多云杉人工林分已经进入更新成熟龄,而这些人工林的持续更新却成为日益凸现的问题。探讨这些云杉人工林的自我更新潜力及云杉种子种群更新特点,可为培育后续森林资源提供科学依据。 本文以川西米亚罗亚高山60a云杉人工林为研究对象,并以该区域内相对稳定的植被群落——天然林为对照,采用种子收集器、土壤种子库筛选、室内外种子萌发实验及野外幼苗调查等方法,从异质性微生境的角度研究了种子雨下落之后,不同微生境对种子库、种子萌发、幼苗建立及分布这一前期更新过程的影响,得出如下结果: 1、通过对川西亚高山60a云杉人工林和天然林6年内种子雨雨量、形态特征、散步动态等的持续观测和综合比较可以发现,云杉林结实特点由于林木自身的特征存在着巨大的变动,2002年和2006年两个种子结实大年内,60a人工林种子雨强度分别达到1088.2 ± 52.3粒/m2和704.3 ± 48.9粒/m2,远大于天然林579.9 ± 28.9粒/m2 和507.5± 30.7粒/m2;且云杉林结实质量优于天然林。60a人工林结实量大,种子质量也最好,相对天然林来说对种群的天然更新以及群落的演替都有最大的贡献潜力。应该说,在川西亚高山云杉人工林的天然更新过程中,种源不是影响天然更新的因素。在种子结实大年里,达到更新成熟的云杉人工林有着优于该地区相对稳定植被群落——天然林的种源优势。至少在种子结实大年,种子供应不是该区域人工林天然更新的限制因子。 2、相对于天然林种子库,人工林种子库在种子萌发前能够有较多的有活力种子。虽然这其中有种子雨输入量有差别的因素存在,但两种林分种子库对种子的保存率的不同才是造成这种差异的主要因素。在人工林中,不同地被类型形成的微生境显著地影响了种子库中种子的密度、垂直分布。有地被物存在的微生境能够将种子雨的大部分截留在地被层中,成为幼苗出现的主要场所;同时不同的地被物对种子的保存情况存在显著的差异,苔藓和凋落物层能都较好地保持其中的种子,到种子萌发前,这两种种子库类型能分别为天然更新提供366.1粒/m2和302粒/m2的有效种子。从这点来看,林下地被物上的种子库能够为天然更新萌发阶段提供数量可观的物质基础。 3、种子的萌发和幼苗的定居是天然更新过程中种子库向幼苗库转化的关键环节。总的说来,米亚罗人工林区60a云杉人工林种子向幼苗的转化率十分低下,凋落物、苔藓、草本、裸地四种主要地被物以及天然林内种子/幼苗的转化率分别仅为2.22%、2.14%、0.57%、0.67%、1.05%。这种低的转化率成为云杉林天然更新的限制性因子。但在现有更新条件下,微生境对这一环节仍然显示出十分显著的影响,表现为凋落物和苔藓对现有更新的新幼苗的保存率高于其它类型及天然林。苔藓和凋落物在种子萌发,幼苗保存,以及幼苗分布上都要优于其它地被物类型;另外,微地形对天然更新过程的影响也很显著,凹立地上更适宜于种子的汇集、萌发和定居。 Subalpine coniferous forests dominate most parts of the forested areas in western Sichuan, and they are important ecological barriers in the upper reaches of the Yangtze River. Picea asperata is one of the keystone spruce species for re-afforestation after felling of the natural forests and there have been a total of ca. 13 000 ha of plantations dominate by this species established. Nowadays, many P. asperata plantations have reached reproductive maturity. However, continued regeneration becomes to an important problem in these plantations. Understanding their self-regeneration potential and the regeneration characteristics of seed populations in spruce plantations of these plantations can have some insights on the management of these plantations and the establishment of following forest resources. A subalpine 60a P. asperata plantation distributed in Miyaluo artificial forest area was studied in this paper, at the same time. Synchronously, a 150a natural spruce forest was studied as comparison. Using seed collecting traps, sieving method for soil seed bank, seed germination experiments and seedling investigations in the field, the effects of heterogeneous microsites on early natural regeneration processes after seed rain were studied, which included seed banks, seed germination, seedling establishment and distribution. The main results are as follows. 1. Through a 6-year long term investigation of seed rain intensities, characteristic, dispersal dynamics of 60a P. asperata plantation, we could concluded that the seed setting properties of 60a P. asperata plantation have a great variation for the characteristics trees. In the mast seed year of 2002 and 2006, the seed rain intensities of plantation was 1088.2 ± 52.3 seeds/m2 and 704.3 ± 48.9 seeds/m2 respectively, which were much greater than that of natural spruce forest (579.9 ± 28.9 seeds/m2 in 2002, and 507.5± 30.7 seeds/m2 in 2006). Furthermore, the quality of seed rain in P. asperata plantation was better than that of natural spruce forest. Contrasting with natural spruce forest, 60a P. asperata plantation has a greater potential on natural regeneration of P. asperata population and succession of community for the reason of greater seed rain intensities and better seed quality. We can confirm that seed source was not a limiting factor which influences the natural regeneration progress of P. asperata population distributed in subalpine mountain zone, at least in the mast seed year. 2. Contrasting with natural spruce forest, P. asperata population had more viable seeds in seed bank before the germination. Although the difference of seed rain intensities of two forests has effect on this phenomenon, the difference of seed conservation ability in two forests was the main factor. In the P. asperata plantation, the seed densities and seed vertical distribution pattern were significant effected by the microsites, which posed by different ground cover types. In other word, Microsite with ground covers can obstruct most seeds and keep them in ground cover layer from seed rain, and these ground covers would be the main site for seed occurrence. There was a significant difference about seeds conservation ability among these ground covers. Litter and moss could better conserve P. asperata seeds which distributed in this two covers. Seed banks exist in litter and moss ground cover types could respectively provide 302seed/m2 and 366.1seed/m2 for natural regeneration before the seed germination. From this point of view, we could conclude that ground covers can ensure considerable numbers of seeds for the germination process. 3. Seed germination and seed establishment are key steps that the seeds invert to seedlings in natural generation process. In sum, the seed/seeding transform rate in 60a P. asperata plantation distributed in Miyaluo artificial forest area is very low. the seed/seeding transform rates in litter, moss, herb, soil surface and natural spruce forest were 2.22%、2.14%、0.57%、0.67%、1.05%, respectively. The low transform rate become to a limiting factor of P. asperata natural regeneration process. However, under the existing conditions of natural regeneration, microsit still had significant effect on this transform. The states of Seed germination, new seedling conservation, and older seedling distribution in litter and moss were better than in any other ground cover type or natural spruce forest. In addition, the micro-relief has significant effect on natural regeneration process. Concave site was more suitable for seed collection, seed germination and seedling distribution.
Resumo:
A study of cooled Au-197 projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides Hf-183,Hf-184,Hf-186 and Ta-186,Ta-187. The results support the prediction of a strongly favored isomer region near neutron number 116.
Resumo:
A cellulose trisphenylcarbamate-bonded chiral stationary phase was applied to nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) with nonaqueous and aqueous solutions as the mobile phases. Several chiral compounds were successfully resolved on the prepared phase by nano-LC. The applicability of nonaqueous CEC on a cellulose derivative stationary phase was investigated with the organic solvents methanol, hexane, 2-propanol, and tetrahydrofuran (THF) containing acetic acid, as well as triethylamine as the mobile phases. Enantiomers of warfarin and praziquantel were baseline-resolved with plate numbers of 82 300 and 38 800 plates/m, respectively, for the first eluting enantiomer. The influence of applied voltage, concentration of nonpolar solvent, apparent pH, and buffer concentration in the mobile phase on the electroosmotic flow (EOF) and the mobility of the enantiomers was evaluated. Enantioseparations of traps-stilbene oxide and praziquantel were also achieved in aqueous CEC with plate numbers of 111 100 and 107 400 plates/m, respectively, for the first eluting enantiomer. A comparison between nonaqueous CEC and aqueous CEC based on a cellulose trisphenylcarbamate stationary phase was discussed. Pressure-assisted CEC was examined for the chiral separation of praziquantel and faster analysis with high enantioselectivity was acquired with the proper pressurization of the inlet vial.
Resumo:
We investigated the electrical instability of vanadyl-phthalocyanine (VOPc) thin-film transistors (TFTs) at various temperatures. The results demonstrate a slow threshold voltage shift in the bias stress process and a rapid recovery after the removal of bias stress, which indicates that a slower degradation process occurs in the on state while a faster removal in the off state of VOPc TFTs. The shift of threshold voltage comes from traps generated at the organic/dielectrics interface. Additionally, a relaxation time of 10(7) s was obtained at room temperature according to the stretched exponential model, which is comparable to a-Si: H TFTs. Therefore, VOPc TFTs are suitable to be applied in flat panel displays.
Resumo:
Single-crystal-like organic heterojunction films of copper phthalocyanine (CuPc) and copper-hexadecafluoro-phthalocyanine (F16CuPc) were fabricated by weak-epitaxy-growth method. The intrinsic properties of organic heterojunction were revealed through threshold voltage shift of field-effect transistors and measurement of single-crystal-like diodes. At both sides of the heterojunction interface 40 nm thick charge accumulation layers formed, which showed that the long carriers' diffusion length is due to the high crystallinity and low density of deep bulk traps of single-crystal-like films.
Resumo:
Crystalline poly (3-hexylthiophene) (P3HT) nanofibrils are introduced into the P3HT: [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) composite films via P3HT preaggregation in solution by adding a small amount of acetone, and the correlation of P3HT nanofibrils and the optoelectronic properties of P3HT:PCBM bulk heterojunction photovoltaic cells is investigated. It is found that the optical absorption and the hole transport or the resulted P3HT:PCBM composite films increase with the increase of the amount of P3HT nanofibrils due to the increased P3HT crystallinity and highly interconnected nanofibrillar P3HT networks. However, it is also found that high contents of crystalline P3HT nanofibrils may restrain PCBM molecules from demixing with the P3HT component that forms electron traps in the active layer. and hence reduce the charge collection efficiency. Small contents of P3HT nanofibrils not only improve the demixing between P3HT and PCBM components, but also enhance the hole transport via crystalline P3HT nanofibrillar networks, resulting in efficient charge collection.
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.
Resumo:
A new pyrophosphate long-lasting phosphor with composition of Ca1.96P2O7:0.02Eu(2+), 0.02Y(3+) is synthesized via the high-temperature solid-state reaction method. Its properties are systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. The phosphor emits blue light that is related to the characteristic emission of Eu2+ due to 5d-4f transitions. For the optimized sample, bright blue long-lasting phosphorescence (LLP) could be observed by naked eyes even 6 h after the excitation source is removed. The TL spectra show that the doping of Y3+ ions greatly enhanced intensity of 335 K peak and created new TL peak at about 373 K that is also responsible for the blue LLP. Based on our study, Y3+ ions are suggested to act as electron traps to improve the performance of the blue phosphorescence of Eu2+ such as intensity and persistent time.
Resumo:
Phosphate long lasting phosphorescence (LLP) phosphors with composition of (Zn1-xTmx)(2)P2O7 were prepared by the high-temperature solid-state method. Their properties were systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. These phosphors emit blue light that is related to the characteristic emission due to the D-1(2)-H-3(6), D-1(2)-H-3(4) and (1)G(4)-H-3(6) transitions of Tm3+. After the UV light excitation source was switched off, the bright blue long lasting phosphorescence can be observed which could last for more than 1 h in the limit of light perception of dark-adapted human eyes (0.32 mcd/m(2)). Two TL peaks at 336 K and 415 K appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.67 eV and 0.97 eV, respectively.Also, the mechanism was discussed in this report.
Resumo:
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+, Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f(6)5d(1)-S-8(7/2) transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.
Resumo:
Long lasting phosphorescence (LLP) was observed in Eu2+, Ce3+ co-doped strontium borate glasses prepared under the reducing atmosphere due to the emission of both Eu2+ and Ce3+. The methods of photoluminescence, thermoluminescence and phosphorescence were used to study the samples, and possible mechanism was suggested. The co-doping of Ce3+ ions poisoned the phosphorescence emission of Eu2+ because of the competition to obtain the trapped electron. The phosphorescence of Ce3+ in the sample decays more quickly than that of Eu2+, which is suggested for the reason that the emission energy of Ce3+ is higher or the distance between Ce3+ and electron traps of the glasses is longer.
Resumo:
The authors investigated the switch-on transient properties of p-type vanadium phthalocyanine (VOPc) transistors, which were fabricated by weak epitaxy growth on ordered para-sexiphenyl (p-6P) layer. The overshoot phenomenon of drain current had been observed in the VOPc/p-6P transistors, which was explained by the filling of carriers in traps of organic films. The small overshoot value of about 35% and transient duration time of 2 ms demonstrated the low trap concentration in organic films, which were comparable to the reported hydrogenated amorphous-silicon thin-film transistors. Therefore, the VOPc/p-6P transistors can be applied in active matrix liquid crystal display as switch elements.
Resumo:
The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
Resumo:
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier.