89 resultados para noncylindrical domain
Resumo:
We have studied the sequential tunneling of doped weakly coupled GaAs/ALAs superlattices (SLs), whose ground state of the X valley in AlAS layers is designed to be located between the ground state (E(GAMMA1)) and the first excited state (E(GAMMA2)) of the GAMMA valley in GaAs wells. The experimental results demonstrate that the high electric field domain in these SLs is attributed to the GAMMA-X sequential tunneling instead of the usual sequential resonant tunneling between subbands in adjacent wells. Within this kind of high field domain, electrons from the ground state in the GaAs well tunnel to the ground state of the X valley in the nearest AlAs layer, then through very rapid real-space transfer relax from the X valley in the AlAs layer to the ground state of the GAMMA valley of the next GaAs well.
Resumo:
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
Resumo:
We have observed the transition from static to dynamic electric field domain formation induced by a transverse magnetic field and the sample temperature in a doped GaAs/AlAs superlattice. The observations can be very well explained by a general analysis of instabilities and oscillations of the sequential tunnelling current in superlattices based solely on the magnitude of the negative differential resistance region in the tunnelling characteristic of a single barrier. Both increasing magnetic field and sample temperature change the negative differential resistance and cause the transition between static and dynamic electric field domain formation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Phase transformation and subdomain structure in [0001]-oriented gallium nitride (GaN) nanorods of different sizes are studied using molecular dynamics simulations. The analysis concerns the structure of GaN nanorods at 300 K without external loading. Calculations show that a transformation from wurtzite to a tetragonal structure occurs along {0110} lateral surfaces, leading to the formation of a six-sided columnar inversion domain boundary (IDB) in the [0001] direction of the nanorods. This structural configuration is similar to the IDB structure observed experimentally in GaN epitaxial layers. The transformation is significantly dependent on the size of the nanorods.
Resumo:
The large-size domain and continuous para-sexiphenyl (p-6P) ultrathin film was fabricated successfully on silicon dioxide (SiO2) substrate and investigated by atomic force microscopy and selected area electron diffraction. At the optimal substrate temperature of 180 degrees C, the first-layer film exhibits the mode of layer growth, and the domain size approaches 100 mu m(2). Its saturated island density (0.018 mu m(-2)) is much smaller than that of the second-layer film (0.088 mu m(-2)), which begins to show the Volmer-Weber growth mode.
Resumo:
The effect of lanthanum ions on the activity of the cytoplasmic domain of human erythrocyte band 3 (CDB3), which was measured according to the inhibition to aldolase, was studied. In the presence of low concentration of lanthanum ions, the function of CDB3 to inhibit aldolase activity decreased significantly. It indicated that lanthanum ions in the erythrocyte would change the conformation of CDB3 and influence the control on aldolase activity.
Resumo:
The charactesistics of two-dimension spectra obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) with charge injection detection (CID) in frequency domain were studied in the present paper. The measurement spectra were Fourier transformed and the frequency distribution of the spectra was obtained. Results showed that the spectra in frequency domain could he divided into two parts:high frequency and low frequency signals. The later stood for measurement spectra and the former for background and noises. However, the high frequecny signals could not be smoothed simply to reduce noises because the background was deteriorated even though the spectral signal did not change significantly.