170 resultados para binding constant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tight-binding (TB) treatment with the inclusion of d orbitals is applied to the electronic structures of graphitic tubes. The results show that the high angular moment bases in TB scheme are necessary to account the severe curvature effect in ultra-thin single wall carbon nanotubes, especially for properly reproducing the band edge overlap behavior in (5, 0) tube, predicted by the existing ab initio calculations. In the large diameter limit, the participation of two synnmetry-allowed d bases provides a natural replication to the recent measured electronic dispersions of valence band of graphene when the strong anisotropy due to the two-dimensional planar hexagonal sheet structure is dealt with properly. In addition, the detailed relation between the two sets of quantum numbers of screw symmetry and that of zone folding is formulated in appendix. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot (QD) in the framework of effective-mass envelope-function theory using the plane wave basis. The variation of the binding energy with edge length, position of the impurity, and external electric field is studied in detail. A finite potential model is adopted in our calculations. Compared with the infinite potential model [C. I. Mendoza , Phys. Rev. B 71, 075330 (2005)], the following results are found: (1) if the impurity is located in the interior of the QD, our results give a smaller binding energy than the infinite potential model; (2) the binding energies are more sensitively dependent on the applied electric field in the finite potential model; (3) the infinite potential model cannot give correct results for a small QD edge length for any location of the impurity in the QD; (4) some degeneracy is lifted when the dot is no longer cubic. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the electronic structures and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/AlxGa1-xAs quantum dot (QD) in the framework of effective-mass envelope-function theory. The variation of the electronic structures and binding energy with the QD structure parameters and the position of the impurity are studied in detail. We find that (1) acceptor impurity energy levels depend more sensitively on the size of the QD than those of a donor impurity; (2) all impurity energy levels strongly depend on the GaAs quantum well (QW) width; (3) a donor impurity in the QD has only one binding energy level except when the GaAs QW is large; (4) an acceptor impurity in the QD has two binding energy levels, which correspond to heavy- and light-hole quantum states; (5) the binding energy has a maximum value when the impurity is located below the symmetry axis along the growth direction; and (6) the binding energy has a minimum value when the impurity is located at the top corner of the QD. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eight-band effective-mass Hamiltonian of the free-standing narrow-gap InAs quantum ellipsoids is developed, and the electron and hole electronic structures as well as optical properties are calculated by using the model. The energies, wave functions and transition probabilities of quantum spheres as functions of the radius of quantum sphere R is presented. It is found that the energy levels do not vary as 1/R-2, which is caused by the coupling between the conduction and valence bands, and by the constant terms correspond to the spin-orbit splitting energy. The blueshifts of hole states depend strongly on the coupling from electron states, so that the order of hole states changes as has been predicted in experiment. The exciton binding energies are calculated, the calculated excitonic gaps as functions of the ground exciton transition energy are in good agreement with the photoluminescence measured spectra in details. Finally, the hole energy levels and the linear polarization factors in InAs quantum ellipsoids as functions of the aspect ratio are presented. The state 1S(Z up arrow)((1/2)) becomes the hole ground state when e is larger than 2.4. The saturation value of the linear polarization factors of the InAs long ellipsoids of diameter 2.0 nm is 0.86, in agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding energy of an exciton bound to an ionized donor impurity (D+,X) located st the center or the edge in GaAs-AlxGa1-xAs quantum wells is calculated variationally for the well width from 10 to 300 Angstrom by using a two-parameter wave function, The theoretical results are discussed and compared with the previous experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding energies of excitons bound to neutral donors in two-dimensional (2D) semiconductors within the spherical-effective-mass approximation, which are nondegenerate energy bands, have been calculated by a variational method for a relevant range of the effective electron-to-hole mass ratio sigma. The ratio of the binding energy of a 2D exciton bound to a neutral donor to that of a 2D neutral donor is found to be from 0.58 to 0.10. In the limit of vanishing sigma and large sigma, the results agree fairly well with previous experimental results. The results of this approach are compared with those of earlier theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are-given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these accepters is deviated from that given by the effective mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of accepters. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. [S0163-1829(99)15915-0].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An three phase adjustable output voltage rectifier with constant power flow based on waveform gap patching principle is resented. By patching the gapes in the phase currents in parallel way as well as the ripple of the output voltage in series way, it implements the constant power flow from the three-phase line to the DC output without using any line frequency (and its harmonics) energy storage components. Principally, by treating only 22.4% power of the needed power output, this rectifier can supply constant power flow with adjustable output voltages without bring about any harmonic interferences to the power utility and achieve unite power factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient charge response Q(t) of a two-dimensional electron gas (2DEG) in GaAs/AlxGa1-xAs heterostructures to a small pulse of the gate voltage, applied between the top gate and source electrodes in a Corbino structure, was employed to directly measure the effective diffusion constant of a 2DEG in the quantum Hall regime. The measured diffusion constant D showed a drastic change as the magnetic field was swept through the integer fillings of the Landau levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.