254 resultados para Via lacrimal excretora


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, growth of GaN-based materials-related quantum dots has become a hot topic in semiconductor materials research. Considerable efforts have been devoted to growth of self-assembled quantum dots of GaN-based materials via MOCVD (Metal Organic Chemical Vapor Deposition) and there are a lot of relevant literatures. There is, however, few review papers for the topic. In this paper, different experimental methods for fabrication of quantum dots of GaN-based materials via MOCVD are critically reviewed and the experimental conditions and parameters, which may affect growth of the quantum dots, are analyzed, with an aim at providing some critical reference for the related future experiment research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric ZnSe nanowires have been synthesized through a vapor phase reaction of zinc and selenium powder on the (100) silicon substrate coated with a gold film of 2 nm in thickness. The microstructures and the chemical compositions of the as-grown nanowires have been investigated by means of electron microscopy, the energy dispersive spectroscopy, and Raman spectroscopy. The results reveal that the as-grown materials consist of ZnSe nanowires with diameters ranging from 5 to 50 nm. Photoluminescence of the sample demonstrates a strong green emission from room temperature down to 10 K. This is attributed to the recombination of electrons from conduction band to the medium deep Au acceptors. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the morphology of an InGaAs nanostructure grown by molecular beam epitaxy via cycled (InAs)(n)/(GaAs)(n) monolayer deposition. Atomic force microscopy images clearly show that varying monolayer deposition per cycle has significant influence on the size, density and shape of the InGaAs nanostructure. Low-temperature photoluminescence spectra show the effect of n on the optical quality, and 1.35mum photoluminescence with a linewidth of only 19.2meV at room temperature has been achieved in the (InAs)(1)/(GaAs)(1) structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional GaN pyramids have been successfully obtained on submicron dot-patterned (0001) sapphire substrates by using the selective metalorganic vapor phase epitaxy (MOVPE) technique. The dot-pattern is a hexagon arranged with a 0.5-mu m width and 1.0-mu m spacing. The GaN structure comprises a hexagonal pyramid covered with six {1 (1) over bar 01} pyramidal facets on the side of a hexagonal pyramid having a (0001) facet on the top. Cathodoluminescence (CL) measurement was carried our. on the hexagonal pyramid at low temperature. Two distinct spectra were observed to occur at about 359 and 329 nm. The higher energy is thought to be related to GaN dot, and the lower one is due to GaN dot band edge emission. The intensities of the two spectra were investigated as a function of temperature in the range of 135-150 K. (C) 2000 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.