183 resultados para Transport ionique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin-dependent electron transport in a special magnetic-electric superlattice periodically modulated by parallel ferromagnetic metal stripes and Schottky normal-metal stripes. The results show that, the spin-polarized current can be well controllable by modulating the magnetic strength of the ferromagnetic stripes or the voltage applied to the Schottky normal-metal stripes. It is obvious that, to the system of the magnetic superlattice, the polarized current can be enhanced by the magnetic strength of ferromagnetic stripes. Nevertheless, it is found that, for the magnetic-electric superlattice, the polarized current can also be remarkably advanced by the voltage applied to the Schottky normal-metal stripes. These results may indicate a useable approach for tunable spintronic devices. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors investigate the spin-polarized transport properties of a two-dimensional electron gas in a n-type diluted magnetic narrow gap semiconductor quantum well subjected to perpendicular magnetic and electric fields. Interesting beating patterns in the magnetoresistance are found which can be tuned significantly by varying the electric field. A resonant enhancement of spin-polarized current is found which is induced by the competition between the s-d exchange interaction and the Rashba effect [Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984)]. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By viewing the non-equilibrium transport setup as a quantum open system, we propose a reduced-density-matrix based quantum transport formalism. At the level of self-consistent Born approximation, it can precisely account for the correlation between tunneling and the system internal many-body interaction, leading to certain novel behavior such as the non-equilibrium Kondo effect. It also opens a new way to construct time-dependent density functional theory for transport through large-scale complex systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport phenomena in radial flow metalorganic chemical vapor deposition (MOCVD) reactor with three concentric vertical inlets are studied by two-dimensional numerical modeling. By varying the parameters such as gas pressure, flow rates combination of multi-inlets, geometric shapes and sizes of reactor and flow distributor, temperatures of susceptor and ceiling, and susceptor rotation, the corresponding velocity, temperature, and concentration fields inside the reactor are obtained; the onset and change of flow recirculation cells under influences of those parameters are determined. It is found that recirculation cells, originated from flow separation near the bend of reactor inlets, are affected mainly by the reactor height and shape, the operating pressure, the flow rates combination of multi-inlets, and the mean temperature between susceptor and ceiling. By increasing the flow rate of mid-inlet and the mean temperature, decreasing the pressure, maintaining the reactor height below certain criteria, and trimming the bends of reactor wall and flow distributor to streamlined shape, the recirculation cells can be minimized so that smooth and rectilinear flow prevails in the susceptor region, which corresponds to smooth and rectilinear isotherms and larger reactant concentration near the susceptor. For the optimized reactor shape, the reactor size can be enlarged to diameter D = 40 cm and height H = 2 cm without flow recirculation. The susceptor rotation over a few hundred rpm around the reactor central axis will induce the recirculation cell near the exit and deflect the streamlines near the susceptor, which is not the case for vertical reactors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport properties of two-dimensional electron gas (2DEG) are crucial to metamorphic high-electron-mobility transistors (MM-HEMT). We have investigated the variations of subband electron mobility and concentration versus temperature from Shubnikov-de Hass oscillations., and variable temperature Hall measurements. The results indicate that the electrical performance is the best when the In content is 0.65 in the channel for MM-HEMT. When the In content exceeds 0.65, a large lattice mismatch will cause dislocations and result in the decrease of mobility and the fall of performance in materials and devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum waveguide theory is proposed for hole transport in the mesoscopic structures, including the band mixing effect. We found that due to the interference between the 'light' hole and 'heavy' wave, the transmission and reflection coefficients oscillate more irregularly as a function of incident wave vector geometry parameters. Furthermore conversion between the heavy hole and light hole states occurs at the intersection. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission through coupled quantum dots (CQDs) is calculated using the coupled-channel recursion method. Our results reveal that the conductance peaks move to high energy as the CQDs radius decreases or the period increases. If we increase the transverse momentum the conductance peaks move to high energy. Applying this characteristic, we can design a switch device using CQDs by applying a static electric field perpendicular to transmission direction. The theoretical results qualitatively agree with the available experimental data. Our calculated results may be useful for the application of CQDs to photoelectric devices. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive the modified rate equations for an Aharonov-Bohm (AB) ring with two transversely coupled quantum dots (QD's) embedded in two arms in the presence of a magnetic field. We find that the interdot coupling between the two QD's can cause a temporal oscillation in electron occupation at the initial stage of the quantum dynamics, while the source-drain current decays monotonically to a stationary value. On the other hand, the interdot coupling equivalently divides the AB ring into two coupled subrings. That also destroys the normal AB oscillations with a period of 2pi, and generates new and complex periodic oscillations with their periods varying in a linear manner as the ratio between two magnetic fluxes (each penetrates one AB subring) increases. Furthermore, the interference between two subrings is also evident from the observation of the perturbed fundamental AB oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission through quantum dots (QDs) is calculated using the recursion method. In our calculation, the effect of finite offset is taken into account. The results show that the shapes of the QDs determine the number of resonant tunneling peaks and the distances between the peaks decrease as the radii of the QDs increase. The intensities of the conductance are strongly dependent on the barrier widths. The conductance peaks are split when transmitting through two QDs. The theoretical results qualitatively agree with the available experimental data. Our calculated results should be useful for the application of QDs to photoelectric devices. (C) 2002 American Institute of Physics.