126 resultados para Scale 1:39,600.None
Resumo:
Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).
Resumo:
随着信息技术的发展 ,用于军事、地理、自然灾害扫描探测的合成孔径雷达系统 (SAR)对其成像能力的分辨率和实时显示要求越来越高 因此 ,研究具有自主知识产权的、可以实时处理高分辨率成像的实时系统迫在眉睫 针对实时数据接收、存储、显示和处理等核心问题 ,提出了一种实时系统解决方案 该方案通过对Linux内核的实时扩展 ,实现了可达到高处理机利用率的多任务实时调度方法 ,可支持混成调度 ;在应用层实现符合实时需求的功能模块 ;为DSP板开发实时驱动 ,形成了从硬件驱动层和操作系统层 ,直到应用软件层的完整实时计算体系
Resumo:
采用氧化除氢热管的高可靠性热管空气预热器于1992年8月25日在略阳电厂125t/h锅炉上投入使用,运行表明,该空气预热器出口热风温度平稳,传热性能稳定,3年内传热能力下降小于10%,漏风极小,节省送引风机电耗200kW,年节电达1400MW·h,达到了预定的目标。
Resumo:
1.用溶胶-凝胶方法制备了一种新型的有机-无机杂交材料,并用这种材料制备了过氧化物酶安培酶电极。用富里叶变换红外光谱和石英晶体微天平对这种有机-无机杂交材料和用这种材料制备的酶膜进行了表征。以亚铁氰化钾为媒介体考察了传感器的电化学行为。用计时安培方法优化了pH和工作电位。传感器的响应时间为10s,线性范围的上限达3.4 mM,检测限为5 * 10~(-7)M。传感器具有高的灵敏度和好的长期稳定性。另外,还把传感器用于流动注射分析和实际样品分析来评估传感器的性能。2.利用有机修饰的溶胶-凝胶材料的优点,制备含磺酸基的功能化的溶胶,用无机-有机杂交手段制备功能化的薄膜(FIOHM),进而制备了媒介体型过氧化氢安培生物传感器。麦尔多拉兰(MDB)通过离子交换作用被固定在膜中,MDB在FIOHM膜中的循环伏安行为比溶液中的MDB的循环伏安行为更为可逆,因而适合于作媒介体。由于磺酸基的供电子能力,MDB分子的电子密度增加,因而就变得易于氧化而难于还原,表现为阴极峰和阳极峰峰电位的负移。这是第一次用溶胶-凝胶方法制备的磺化无机-有机复合材料制备媒介体型过氧化氢传感器。响应时间小于25 s。线性范围上限达0.6mM。高的灵敏度75 nA·μM·cm~(-2)是由于高的MDB载量。检测限为0.9 μM。传感器具有灵敏的响应和满意的稳定性。3.实验证明自身成胶的接枝共聚物PVA-g-PVP是酪氨酸酶的好的固定化材料。三维氢键网络把酶包埋在聚合物膜中。这种固定化方法简单温和。4-乙烯基吡啶组分增强了膜在电极表面的附着力,所以传感器在流动体系中稳定且重现性好。酶膜组成可以调节以得到好的灵敏度或宽的线性范围以满足不同的分析要求。传感器表现出很好的重现性,稳定性和灵敏的响应。传感器在亲水有机溶剂中的线性范围加宽。制备了安培型酚传感器。固定化材料是引入了接枝共聚物PVA-g-PVP的溶胶-凝胶复合膜。酪氨酸酶有效地固定在复合膜中。对这一无机-有机复合杂交材料进行了优化。酪氨酸酶在溶胶-凝胶膜中保持了其活性,在0V(Ag/AgCl,Sat.KCl)测定了其响应。讨论了pH、氧浓度、温度对响应的影响,考察了传感器的稳定性。酶电极对儿茶酚,苯酚,对-甲苯酚的灵敏度分别为59.6,23.1,39.4μA/mM。酶电极在4℃干态保存,间歇测定3周后,其响应为初始值的73%,稳定性好于接枝共聚物PVA-g-PVP为载体的酪氨酸酶电极。5.首次用安培酶电极定量测定极性有机溶剂。初步实验证实了用酪氨酸酶电极安培法定量惰性的极性有机溶剂的可行性。酪氨酸酶电极的制备方法简单:把酪氨酸酶和共聚物的水溶液滴涂在经过抛光的洁净的玻碳电极表面上,然后置于+4℃冰箱中干燥成膜即可。电化学还原酪氨酸酶催化氧化酚生成的醌提供探测信号。此传感器可以用于定量测定甲醇,乙醇,正丁醇,丙酮,乙腈,四氢呋喃等。该方法对某有机溶剂的检测限,灵敏度,线性范围依赖于所使用的固定化材料和底物的疏水性。对所测试的有机溶剂的响应时间小于2分钟。现场计时电流-石英晶体微天平实验证实了其响应机理:加入的有机溶剂富集底物探针酚,因而降低了酶膜中的酚的浓度。增加底物探针的浓度可以增加检测的灵敏度,因而降低检测限。此方法检测极性有机溶剂的特点是简单,容易,迅速。用酪氨酸酶电极安培定量测定惰性的极性有机溶剂,大大扩展了酶电极的应用范围。用这种检测方法的优点是,可以定量测定那些还没有发现专一性的酶来构造生物传感器的有机溶剂。6.生物传感器的研究中最重要和最基本的问题是酶的固定化。我们小组提出了用低温水凝胶固定化酶方法构造有机相酶电极,但是低温水凝胶与酶的相互作用仍不清楚。我们利用肼类化合物作为探针,研究了辣根过氧化物酶与低温水凝胶的相互作用。常用的羧基捕捉剂肼和对血红素边缘有高度选择性的甲基肼不能很快地明显抑制固定在低温水凝胶中的辣根过氧化物酶的活性。原因是辣根过氧化物酶的构象可能被低温水凝胶锁定,辣根过氧化物酶的羧基和其血红素的边缘被低温水凝胶保护而免受肼类化合物的进攻。作为比较,肼类化合物与吸附在石墨电极上的辣根过氧化物酶的相互作用也用稳态电流响应和循环伏安进行了研究。对水凝胶固定化酶方法.提出了酶电极响应的动力学参数的初步理论解释,其中低温水凝胶层的厚度和电子媒介体的扩散系数不影响米氏常数K_M,但这些参数显著影响饱和响应电流I_(max)。7.六氰合铁钴(II)膜修饰的玻碳电极用于构造电流型葡萄糖传感器。以六氰合铁钴(II)膜电化学催化还原酶促反应过程中产生的过氧化氢为分析信号。明胶作为固定化材料,外涂Nafion膜。低的适加电位避免电化学氧化抗坏血酸、尿酸等干扰物。Nafion涂层靠静电斥力,阻止这些阴离子干扰物到达电极表面。得到了宽的线性范围,给出分析性能参数,进行了动力学分析。
Resumo:
本文用加拿大国立研究院(National Research Council of Canada) Fuhrer等人编制的FORTRAN语言程序(以下简称NRCC程序),对两个冠醚类化合物进行了简正坐标分析,这两个化合物分子是二氧六环(C_4H_8O_2)和12-冠-4(C_8H_(16)O_4)。作者用Synder和Zerbi提出的一般价力场,计算了二氧六环的36个简正振动频率,精化四次后的结果误差为14.04 cm~(-1),得到了二氧六环的精化力场和势能分析矩阵;做了12-冠-4-的中红外光谱(3200-5000cm~(-1))。远红外光谱(500-70cm~(-1))和拉曼光谱(3200-50 cm~(-1),从而归属出12-冠-4的78个简正振动频率实验值;利用二氧六环的精化力场作为初始力场,计算了12-冠-4的简正振动频率,对78个简正振动频率进行了精化计算,精化三次后的结果误差为13.99 cm~(-1),精化后得到12-冠-4的精化力场和势能分布矩阵;将NRCC程序以BASIC语言移至TRS-80微型机上,对二氧六环进行了计算,结果良好,首次给出二氧六环一般价力场的势能分布。一、对二氧六环的处理 二氧六环分子式C_4H_8O_2,合14个原子,有3N-6=36个简正振动频率。分子结构系由二个乙氧基(-CH_2-CH_2-O-)单元组成的含有四个碳,两个氧的六元环,平衡态分子为椅式构象,属于C_(2h)点群,36个简正振动频率分为四个对称类Ag、Au、Bg和Bu,分布是:Ag 10个,Bg 8个,Au 9个,Bu9个。二氧六环的分子结构及坐标示意图见28而图5,定义了14个伸缩内坐标,26个弯曲内坐标,6个扭曲内坐标,共46个,C-C键长1.54A,C-O键长1.41 A,C-H键长1.096A,键角都用109°28'。用CART程序(NRCC程序之一)计算二氧六环14个原子的笛卡尔坐标,用GMAT程序(NRCC程序之二)计算其B矩阵和G矩阵,用FPERT程序(NRCC程序之三)计算其简正振动频率、精化力场,计算用一般价力场,引入V矩阵对称化,将46个坐标化为46个(内)对称坐标,10个多余坐标在FPERT程序计算中除去。二、对12-冠-4的处理 12-冠-4分子式C_8H_(16)O_4,含28个原子,共3N-6=78个简正振动频率,分子结构为四个乙氧基(-CH_2-CH_2-O-)单元组成的含八个碳、四个氧的12元环,自由分子的12-冠-4属于C点群。结构数据引自Groth的X光衍射分数和坐标,自己编制了BASIC语言程度将分数坐标化为笛卡尔坐标,用GMAT程序计算B矩阵和G矩阵,FPERT程序计算78个简正振动频率、精化力场、计算势能分布矩阵,引入U矩阵将92个内坐标化为92个对称坐标,14个多余坐标在FPERT程序中自动除去。三、结果 势能分布矩阵给出分子的振动归属,对这两个冠醚类分子的3N-6个简正振动频率,可以划分为五个振动区域。1.C-H伸缩振动区(3000-2800 cm~(-1)) 在该区中,二氧六环有八个值:2974、2966、2854和2867 cm~(-1)各两个,12-冠-4有16个值:2935、2923、2915和2907 cm~(-1)各两个,2860 cm~(-1)8个,高于2900 cm~(-1)者为反对称伸缩振动,低于2900 cm~(-1)者为对称伸缩振动。2.亚甲基弯曲振动之一(1500-1400 cm~(-1)) 该区的主要振动是亚甲基剪式振动(Scissor),其它振动小于10%二氧六环在该区有四个频率:1443、1461、1451和1457 cm~(-1),12-冠-4有八个频率:1466、1450、1450和1405 cm~(-1)各两个。3.亚甲基弯曲振动区二(1400-1200 cm~(-1))该区的主要振动模式为亚甲基的颤动(wag)、卷曲(twist)和摆动(rock)振动,其它振动小于13%。二氧六环在该区有八个频率:1334、1303、1396、1216、1367、1264、1377和1296 cm~(-1),12-冠-4有十六个频率:1388、1363、……1229 cm~(-1)(其中1288、1307cm~(-1)非简并,其余皆两重简并)。4.环的骨架伸缩振动区(1200-600 cm~(-1))该区振动模式复杂,除环的骨架伸缩振动外,还有亚甲基的wag、twist、rock以及环的骨架弯曲振动,而且这些振动的势能分布值都不小。二氧六环在该区有十一个频率,从1127至610 cm~(-1),12-冠-4有二十个频率,从1135至184 cm~(-1)且大都是二重简并的。5.低频区(600-50cm~(-1))这两个分子在低频区的势能分布略有差别。二氧六环在该区有五个频率:503、486、427、276和224 cm~(-1),主要振动模式为骨架弯曲振动和扭曲振动,C-O、C-C的扭曲振动在三个最低频率中分布占10-30%。12-冠-4在该区有18个频率,除570和547cm~(-1)处,都是二重简并的,六个最低频率的振动模式完全属于C-O、C-C键的扭曲振动,其它振动小于10%,所以200 cm~(-1)以下可称为12-冠-4的扭曲振动区,在600-200cm~(-1)之间的12个频率主要是骨架的弯曲振动,也有一定量的亚甲基wag、twist、rock振动。12-冠-4的简正坐标分析尚未有人做过。二氧六环的计算结果与Snyder和Zerbi的分析相吻合,12-冠-4和二氧六环两分子势能分布的相对一致性证明了对12-冠-4的简正坐标分析基本是正确的。本文比较了二分子的力常数和振动频率,探讨了环的大小对振动光谱的影响。四、NRCC程序简介 NRCC程序由CART、GMAT和FPERT三个程序组成,即可联一起运用,亦可分开独立进行运算。该程序功能强,所占内存大,适于大、中型计算机使用。CART程序之名字取自Cartisian Co-or-dinates的前四个字母,功能系由分子结构参数(键长、键角)计算分子内各原子的笛卡尔坐标。GMAT程序之名字取自G matrix的前四个字母,功能系由分子内各原子的笛卡尔坐标,原子质量和内坐标定义计算分子内各原子的坐标交换矩阵B和Wilson振动动能矩阵G。FPERT程序之名字取自F Perturbation的前五个字母,功能系由分子振动功能矩阵G、势能常数即力常数矩阵F计算分子的简正振动频率和势能分布矩阵,再通过实验频率精化势能矩阵F。NRCC程序可对含30个原子、60个内坐标的分子进行简正坐标分析,扩充后容量增大一倍。该程序可选用一般价力场(General Valence Force Field, 简称GVFF)和UBS力场(Urey-Bradley-Shimanouchi Force Field),简称UBSFF或UBFF)。可选用对称化U矩阵,可自行决定力场精化次数和阻尼常数以限制精化结果的收敛性。五、NRCC程序在TRS-80微型机上移植试尝(该部分曾在第三届长春夏季化学讨论会上宣读)针对NRCC程序占内存空间大、难以在微型机上实现的情况,作者将NRCC程序改编为BASIC语言,改变程序的原来结构,形成一组BASIC语言程序:CART/BAS、GMAT/BAS和VIFR/BAS,改编后的BASIC程序在TRS-80微型机调试通过,TRS-80机字长8位,New Dos系统内存32K。改写后的程序只保持了原程序的基本原理,在内存,语句上改动很大,以适于微型机使用。数据在程序中直接嵌入,利于修改替换,且BASIC语言简单易学,便于操作。CART/BAS程序可计算含30个原子以内的分子的笛卡尔坐标,GMAT/BAS程序可计算含20个原子、45个内坐标的分子的G矩阵,VIFR/BAS程序可计算含15个原子的分子的简正振动频率。利用这组程序,作者以二氧六环分子为例做了一些试尝运算,误差14.4 cm~(-1),相对误差1.8%,结果较理想。
Resumo:
为了得到高性能的GaN基发光器件,有源层采用MOCVD技术和表面应力的不均匀性诱导方法在生长了InGaN量子点,并通过原子力显微镜(AFM),透射电子显微镜(TEM)和光致发光(PL)谱对其微观形貌和光学性质进行了观察和研究,AFM和TEM观察结果表明
Resumo:
用能量为1~1.8MeV、注量为10~13~10~17/cm~2的电子, 对HEMT(高电子迁移率晶体管)材料进行辐照, 得到了材料结构中的二维电子气(2DEG)的电输运性质随辐照电子能量和注量的变化关系, 并进行了讨论。还将该结果与电子辐照P-HEMT和LT-HEMT材料的结果进行了比较, 对异质结界面的辐照效应进行了分析。
Resumo:
土壤呼吸是森林生态系统碳循环的重要组成部分,对土壤呼吸的主要组分根系呼吸和土壤微生物呼吸进行分离并量化,对于了解土壤碳释放规律、估算生态系统土壤碳的年际通量以及预测气候变化条件下根系或土壤微生物对土壤碳释放格局的影响具有重要意义。本文采用挖壕法测定辽东山区蒙古栎林、杂木林和胡桃楸林的土壤表面CO2通量,并同步分析土壤水热因子及土壤有机质、N含量、根系生物量、土壤酶活性、土壤微生物生物量等。研究结果表明:(1)辽东山区次生林0-10cm土壤有机质含量为9.29-18.15%,全氮含量为0.43-0.90%,pH值为5.67-6.19;次生林生长季细根生物量平均为152.61- 447.79 g/m2,粗根生物量平均为255.42-507.42 g/m2,根系总量平均为540.93-955.22 g/m2;土壤酶活性季节变化明显,且具垂直分布特征,蒙古栎林的土壤转化酶、淀粉酶和脱氢酶活性最高,胡桃楸林最低,胡桃楸林过氧化氢酶活性相对最大;土壤微生物量碳、氮的季节变化呈明显的单峰曲线并与土壤温度相关,土壤微生物量碳氮之间具显著相关性(P<0.05)。(2)次生林土壤总呼吸、根呼吸和土壤微生物呼吸具明显的日、季变化规律,生长季根呼吸贡献相对较低,胡桃楸林根呼吸贡献率为34.0-34.8%,蒙古栎林为17.9-28.4%,杂木林为14.7-35.3%;土壤微生物呼吸贡献率为66.0-85.3%,高于根呼吸贡献率,说明辽东山区次生林土壤微生物呼吸决定土壤总呼吸的变化趋势。(3)土壤呼吸与地下5cm土壤温度呈指数函数关系,土壤总呼吸的Q10值为1.29-2.30,微生物呼吸的Q10值为1.28-2.09,根呼吸的Q10值为1.29-3.72;土壤总呼吸、微生物呼吸、根呼吸与土壤含水量均无明显相关关系;蒙古栎林根呼吸与细根生物量显著相关,杂木林根呼吸与粗根生物量及根系总生物量显著相关,胡桃楸林根呼吸与根系生物量总量显著相关(P<0.05);微生物呼吸与淀粉酶、转化酶、脱氢酶、过氧化氢酶均无显著相关性(除胡桃楸林与过氧化氢酶显著相关);微生物呼吸与土壤微生物量碳、氮均呈显著线性相关关系(P<0.05)。(4)蒙古栎林土壤总呼吸、根呼吸、土壤微生物呼吸年际碳释放量分别为572.78、147.78和425.59 g C m-2a-1,杂木林分别为403.12、108.92、297.51 g C m-2a-1,胡桃楸林分别为519.47、173.75、345.72 g C m-2a-1;生长季和非生长季通过根呼吸释放的碳量均小于分解土壤有机质的微生物呼吸释放的碳量,非生长季次生林土壤碳释放量为39.21-152.04 g C m-2a-1,占全年呼吸总量的10-29%,说明冬季土壤碳释放量不能忽略。