87 resultados para RADIATIVE ENERGY-LOSS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to the excited states 1s2s(2), 1s2p(2), 1s2snp (n = 2-5), 1s2sns (n = 3-5), 1s2pns (n = 3-5), and 1s2pnp (n = 3-5) are calculated by using a full relativistic distorted wave method. The latest experimental electron energy loss spectra for inner-shell electron excitations of lithium at a given incident electron energy of 2500 eV [Chin. Phys. Lett. 25 (2008) 3649] have been reproduced by the present theoretical investigation excellently. At the same time, the structures of electron energy loss spectra of lithium at low incident electron energy are also predicted theoretically, it is found that the electron energy loss spectra in the energy region of 55-57 eV show two-peak structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly charged ions (HCls) carrying high Coulomb potential energy (E-p) could cause great changes in the physical and chemical properties of material surface when they bombard on the solid surface. In our work, the secondary ion yield dependence on highly charged Pbq+ (q = 4-36) bombardment on Al surface has been investigated. Aluminum films (99.99%) covered with a natural oxide film was chosen as our target and the kinetic energy (E-k) was varied between 80 keV and 400 keV. The yield with different incident angles could be described well by the equation developed by us. The equation consists of two parts due to the kinetic sputtering and potential sputtering. The physical interpretations of the coefficients in the said equation are discussed. Also the results on the kinetic sputtering produced by the nuclear energy loss on target Surface are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electron emission yield of the interaction of highly charged argon ions with silicon surface is reported. The experiment was done at the Atomic Physics Research Platform on the Electron Cyclotron Resonance (ECR) Ion Source of the National Laboratory HIRFL (Heavy Ion Research Facility in Lanzhou). In the experiment, the potential energy and kinetic energy was selected by varying the projectile charge states and extracting voltage, thus the contributions of the projectile potential energy deposition and electronic energy loss in the solid are extensively investigated. The results show that, the two main factors leading to surface electron emission, namely the potential energy deposition and the electronic energy loss, are both approximately proportional to the electron emission yield per ion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The direct Coulomb ionization process can be generally well described by the ECPSSR theory, which bases on the perturbed-stationary- state(PSS) and accounts for the energy-loss, Coulomb-deflection, and relativistic effects. But the ECPSSR calculation has significant deviations for heavy projectile at low impinging energies. In this paper we propose a new modified ECPSSR theory, i.e. MECUSAR, in which PSS is replaced by an united and separated atom model, and molecule-orbit effect is considered. The MECUSAR calculations give better agreement with the experimental data at lower impinging energies, and agree with the ECPSSR calculations at high energies. By using OBKN (Oppenheimer-Brinkman-Kramers formulas of Nikolaev) theory to describe the contribution of the electron capture, we further modified the proposed MECUSAR theory, and calculated the target ionization cross sections for different charge states of the projectile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work a study of damage production in gallium nitride via elastic collision process (nuclear energy deposition) and inelastic collision process (electronic energy deposition) using various heavy ions is presented. Ordinary low-energy heavy ions (Fe+ and Mo+ ions of 110 keV), swift heavy ions (Pb-208(27+) ions of 1.1 MeV/u) and slow highly-charged heavy ions (Xen+ ions of 180 keV) were employed in the irradiation. Damage accumulation in the GaN crystal films as a function of ion fluence and temperature was studied with RBS-channeling technique, Raman scattering technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ordinary low-energy heavy ion irradiation, the temperature dependence of damage production is moderate up to about 413 K resulting in amorphization of the damaged layer. Enhanced dynamic annealing of defects dominates at higher temperatures. Correlation of amorphization with material decomposition and nitrogen bubble formation was found. In the irradiation of swift heavy ions, rapid damage accumulation and efficient erosion of the irradiated layer occur at a rather low value of electronic energy deposition (about 1.3 keV/nm(3)),. which also varies with irradiation temperature. In the irradiation of slow highly-charged heavy ions (SHCI), enhanced amorphization and surface erosion due to potential energy deposition of SHCI was found. It is indicated that damage production in GaN is remarkably more sensitive to electronic energy loss via excitation and ionization than to nuclear energy loss via elastic collisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molybdenum L-shell X-rays were produced by Xeq+ (q = 25-30) bombardment at low energies from 2.65 to 4.55 keV/amu (350-600 keV). We observed a kinetic energy threshold of Mo L-shell ionization down to 2.65-3.03 keV/amu (350-400 keV). The charge state effect of the incident ions was not observed which shows that the ions were neutralized, reaching an equilibrium charge state and losing their initial charge state memory before production of L-shell vacancies resulted in X-ray production. The experimental ionization cross sections were compared with those from Binary Encounter Approximation theory. Taking into account projectile deflection in the target nuclear Coulomb field, the ionization cross section of Mo L-shell near the kinetic energy threshold was well described. (C) 2010 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the excitation and dissociation processes of the molecule W(CO)(6) in collisions with low kinetic energy (3 keV) protons, monocharged fluorine, and chlorine ions using double charge transfer spectroscopy. By analyzing the kinetic energy loss of the projectile anions, we measured the excitation energy distribution of the produced transient dications W(CO)(6)(2+). By coincidence measurements between the anions and the stable or fragments of W(CO)(6)(2+), we determined the energy distribution for each dissociation channel. Based on the experimental data, the emission of the first CO was tentatively attributed to a nonstatistical direct dissociation process and the emission of the second or more CO ligands was attributed to the statistical dissociation processes. The dissociation energies for the successive breaking of the W-CO bond were estimated using a cascade model. The ratio between charge separation and evaporation (by the loss of CO+ and CO, respectively) channels was estimated to be 6% in the case of Cl+ impact. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3523347]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文对国内外快重离子在固体材料中引起电子能损效应的研究工作的历史和现状作了简短回顾,重点列举了到目前为止在钇铁石榴石(YIG)电子能损效应研究中取得的主要结果以及几种主要的理论模型。详细叙述了在兰州重离子加速器上进行1GeV氢离子辐照YIG材料的实验过程。用倾斜样品X一射线衍射(STD)、穆斯堡尔谱、饱和磁化强度测量等方法研究了辐照前后YIG样品的微观结构和物理性质变化,分析结果表明晶胞常数a, 非晶相百分数Fp随电子能损Se和辐照剂量Φt的增加而变大,而饱和磁化强度4π Ms减小.验证了YIG完全非晶化的电子能损阈值为Se=8.3 MeV/μm和临界剂量为Φt=1x1014 ions/cm2,在总结本次实验和国内外文献结果的基础上,提出了一个关于Fp(Se, Φt)函数的经验性的数学模型,并在模型中将材料本身的性质和电子能损及辐照剂量联系起来。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SmOx modified Rh(l 0 0) surfaces have been in-situ prepared by depositing metallic Sin and subsequently oxidizing under controlled conditions, and the interaction between the lanthanide oxide and transition metal has been characterized by means of X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy (HREELS) as well as thermal desorption spectroscopy (TDS). As evidenced, the adsorption of CO on the modified surfaces shows some different features to the original surface of Rh(l 00). The covering of SmOx blocks some sites on the surface and consequently suppresses adsorption of the typical CO species with an uptake at about 500 K, while a novel desorption peak centered at 260 K emerges in the CO TDS. Correspondingly, the XP spectrum exhibits a new C Is peak at 287.9 eV and 0 Is peak at 532.6 eV. The intensity of the low temperature peak varies with the coverage of SmOx, which shows an actual correlation to the perimeter sites of SmOx particles on the surface. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of europium complexes were synthesized and their electroluminescent (EL) characteristics were studied. It was found by comparison that the different substituted groups, such as methyl, chlorine, and nitryl, on ligand 1,10-phenanthroline affect significantly the EL performance of devices based on these complexes. The more methyl-substituted groups on ligand 1,10-phenanthroline led to higher device efficiency. A chlorine-substituted group showed the approximate EL performance as two methyl-substituted groups, whereas a nitryl substituent reduced significantly the EL luminous efficiency. However, beta-diketonate ligand TTA and DBM exhibited similar EL performance. The improved EL luminous efficiency by proper substituted groups on the 1, 10-phenanthroline was attributed to the reduction of the energy loss caused by light hydrogen atom vibration, as well as concentration quenching caused by intermolecular interaction, and the match of energy level between the ligand and Eu3+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the binding of neutral red (NR) to bovine serum albumin (BSA) under physiological conditions has been studied by spectroscopy method including fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The Stern-Volmer fluorescence quenching constant (K-SV), binding constant (K-b) and the number of binding sites (It) were measured by fluorescence quenching method. Fluorescence experiments were also performed at different ionic strengths. It was found K-SV was ionic strength dependent, which indicated the electrostatic interactions were part of the binding forces. The distance r between donor (BSA) and acceptor (NR) was obtained according to Foster's non-radiative energy transfer theory. CD spectroscopy and FT-IR spectroscopy were used to investigate the structural information of BSA molecules on the binding of NR, and the results showed no change of BSA conformation in our experimental conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The difference in the electrochemical behavior of hydroquinone and pyrocatechol. at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and. electron transfer of redox species.