135 resultados para Pointing deviation
Resumo:
Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics ofMicrocystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R 2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.
Resumo:
Four microsatellites were used to examine the genetic variability of the spawning stocks of Chinese sturgeon, Acipenser sinensis, from the Yangtze River sampled over a 3-year period (1999-2001). Within 60 individuals, a total of 28 alleles were detected over four polymorphic microsatellite loci. The number of alleles per locus ranged from 4 to 15, with an average allele number of 7. The number of genotypes per locus ranged from 6 to 41. The genetic diversity of four microsatellite loci varied from 0.34 to 0.67, with an average value of 0.54. For the four microsatellite loci, the deviation from the Hardy-Weinberg equilibrium was mainly due to null alleles. The mean number of alleles per locus and the mean heterozygosity were lower than the average values known for anadromous fishes. Fish were clustered according to their microsatellite characteristics using an unsupervised 'Artificial Neural Networks' method entitled 'Self-organizing Map'. The results revealed no significant genetic differentiation considering genetic distance among samples collected during different years. Lack of heterogeneity among different annual groups of spawning stocks was explained by the complex age structure (from 8 to 27 years for males and 12 to 35 years for females) of Chinese sturgeon, leading to formulate an hypothesis about the maintenance of genetic diversity and stability in long-lived animals.
Resumo:
Ultrasonic solvent extraction combined with solid-phase microextraction (SPME) with calix[4]arene/hydroxy-terminated silicone (C[4]/OHTSO) oil coated fiber was used to extract phthalate acid esters (PAEs) plasticizers in plastic, such as blood bags, transfusion tubing, food packaging bag, and mineral water bottle for analysis by gas chromatography (GC). Both extraction parameters (i.e. extraction time, extraction temperature, ionic strength) and conditions of the thermal desorption in a GC injector were optimized by analysis of eight phthalates. The fiber shows wonderful sensitivity and selectivity to the tested compounds. Owing to its high thermal stability (380 degreesC), the carryover effect that often encountered when using conventional fibers can be reduced by appropriately enhancing the injector temperature. The method showed linear response over two to four orders of magnitude with correlation coefficients (r) better than 0.996, and limits of detection (LOD) ranged between 0.006 and 0.084 mug l(-1). The relative standard deviation values obtained were less than or equal to 10%. bis-2-Ethylhexyl phthalate (DEHP) was the sole analyte detected in these plastics and recoveries were in the ranges 95.5-101.4% in all the samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of AlxGa1-xN/GaN heterostructures was calculated. Based on the model of treating dislocation as a charged line, an exponentially varied potential was adopted to calculate the mobility. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data, and we obtained a good fitting between the calculated and experimental results. It was found that the measured mobility is dominated by interface roughness and dislocation scattering at low temperatures if dislocation density is relatively high (>10(9) cm(-2)), and accounts for the nearly flattening-out behavior with increasing temperature.
Resumo:
Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]
Resumo:
A method for fabrication of long-wavelength narrow line-width InGaAs resonant cavity enhanced (RCE) photodetectors in a silicon substrate operating at the wavelength range of 1.3-1.6 mu m has been developed. A full width at half maximum (FWHM) of 0.7 nm and a peak responsivity of 0. 16 A/W at the resonance wavelength of 1.55 mu m have been accomplished by using a thick InP layer as part of the resonant cavity. The effects of roughness and tilt of the InP layer surface, and its free carrier absorption, as well as the thickness deviation of the mirror pair on the resonance wavelength shift and the peak quantum efficiency of the RCE photodetectors are analyzed in detail, and approaches for minimizing them toward superior performance are suggested. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The well-width dependence of in-plane optical anisotropy (IPOA) in (001) GaAs/AlxGa1-xAs quantum wells induced by in-plane uniaxial strain and interface asymmetry has been studied comprehensively. Theoretical calculations show that the IPOA induced by in-plane uniaxial strain and interface asymmetry exhibits much different well-width dependence. The strain-induced IPOA is inversely proportional to the energy spacing between heavy- and light-hole subbands, so it increases with the well width. However, the interface-related IPOA is mainly determined by the probability that the heavy- and light-holes appear at the interfaces, so it decreases with the well width. Reflectance difference spectroscopy has been carried out to measure the IPOA of (001) GaAs/AlxGa1-xAs quantum wells with different well widths. Strain- and interface-induced IPOA have been distinguished by using a stress apparatus, and good agreement with the theoretical prediction is obtained. The anisotropic interface potential parameters are also determined. In addition, the energy shift between the interface- and strain-induced 1H1E reflectance difference (RD) structures, and the deviation of the 1L1E RD signal away from the prediction of the calculation model have been discussed.
Resumo:
The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of an AlxGa1-xN/GaN heterostructure is calculated. The accurate wave functions and electron distributions of the three lowest subbands for a typical structure are obtained by solving the Schrodinger and Poisson equations self-consistently. Based on the model of treating dislocation as a charged line, a simple scattering potential, a square-well potential, is utilized. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data. It is also found that the dislocation scattering dominates both the low- and moderate-temperature mobilities and accounts for the nearly flattening-out behavior with increasing temperature. To clarify the role of dislocation scattering all standard scattering mechanisms are included in the calculation.
Resumo:
The internal reflection of the multimode-interference (MMI)-type device is calculated with the bidirectional beam propagation method. The calculated results indicate that the difference of the effective refractive indices between the core region and the surrounding region has a determining effect on the internal reflection of the MMI-type device. The output taper for the MMI-type combiner and splitter has a more evident effect on the internal reflection than the input taper. The internal reflection decreases with increasing the end width of the taper. For the MMI-type device with appropriate tapers, the internal reflection does not show evident degradation with the deviation of the length of the MMI region from its optimal value. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
sing the result of model-solid theory, we have obtained the relationship between bandgap and strain of Si1-x Ge-x alloy on Si (100) substrate with x < 0.85. It was shown that the deviation between the bandgap of strained SiGe and relaxed SiGe is proportional to the strain. According to the theoretical result, a novel method was suggested to determine the strain state of SiGe/ Si through measuring the bandgap. The strain in the SiGe/Si multi-quantum wells was measured using the new method and the results had good agreement with that from XRD measurement.
Resumo:
A microcavity structure, containing self-assembled InGaAs quantum dots, is studied by angle-resolved photoluminescence (PL) spectroscopy. A doublet with the splitting energy of 0.5-1.5 nm appears when the detection angle is larger than 35degrees. This doublet is identified as mode splitting (not the Rabi splitting) by polarization measurements. We find that it is the considerable deviation of the cavity-mode frequency from the central frequency of the stop band that makes the TE and TM cavity modes split more discernibly. The inhomogeneous broadening of quantum dots gives the TE and TM cavity modes a chance to show up simultaneously in the PL spectra. (C) 2003 American Institute of Physics.
Resumo:
A determination of {1 1 1}A and {1 1 1}B in cubic GaN(c-GaN) was investigated by X-ray diffraction technique in detail. The c-GaN films are grown on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition(MOCVD). The difference of integrated intensities measured by omega scan for the different order diffractions from {1 1 1}A and {1 1 1}B planes in the four-circle diffractometer gives convincing evidence as to which is the {1 1 1}A and which is the {1 1 1}B planes. The lesser deviation between the ratios of /F-h k l/(2)//F-(h) over bar (k) over bar (l) over bar/(2) and the calculated values after dispersion correction for atomic scattering factor shows that the content of parasitic hexagonal GaN(h-GaN) grown on c-GaN{1 1 1}A planes is higher than that on {1 1 1}B planes. The reciprocal space mappings provide additional proof that the h-GaN inclusions in c-GaN films appear as lamellar structure. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Defects and morphologies are presented in this paper as revealed with transmission electron microscope (TEM) in the In(0.8)G(0.2)As/InAlAs heterostructure on InP(001) for high-electron-mobility transistors application. Most of the misfit dislocation lines are 60 degrees type and they deviate < 110 > at some angles to either side according to their Burges vectors. The misfit dislocation lines deviating [-110] are divided into two types according to whether their edge component b(eg) of Burges vectors in [001] pointing up or down. If b(eg) points up in the growth direction, there is the local periodical strain modulation along the dislocation line. In addition, the periodical modulation in height along [-110] on the In(0.8)G(0.2)As surface is observed, this surface morphology is not associated with the relaxation of mismatch strain.
Resumo:
Evolution of the height distribution of Ge islands during in situ annealing of Ge films on Si(1 0 0) has been studied. Island height is found to have a bimodal distribution. The standard deviation of the island height divided by the mean island height, for the mode of larger island size is more than that for the other mode. We suggest that the presence of Ehrlich-Schwoebel barriers, combined with the misfit strain, can lead to the bimodal distribution of island size, the mode of larger island size having narrower base size distribution, but wider height distribution for Ge islands on Si(1 0 0). The bimodal distribution of island size could be stable due to kinetics without necessarily regarding it as minimum-energy configuration. (C) 1999 Elsevier Science B.V. All rights reserved.