220 resultados para Parametric resonance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3](2-) defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3](2-) is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000 degrees C annealing, [-SiO3](2-) defects still exist in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the conductance of a quantum dot system suffering an anti-symmetric ac gate voltage which induces the transition between dot levels in the linear regime at zero temperature in the rotating wave approximation. Interesting Fano resonances appear on one side of the displaced resonant tunnelling peaks for the nonresonant case or the peak splitting for the resonant case. The line shape of conductance (vs Fermi energy) near each level of the quantum dot can be decomposed into two profiles: a Breit-Wigner peak and a Fano profile, or a Breit-Wigner peak and a dip in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the Fano resonance in photon-assisted transport through a quantum dot. Both the coherent current and the spectral density of shot noise have been calculated. It is predicted that the shape of the Fano profile will also appear in satellite peaks. It is found that the variations of Fano profiles with the strengths of nonresonant transmissions are not synchronous in absorption and emission sidebands. The effect of interference on photon-assisted pumped current has also been investigated. We further predict the current and spectral density of shot noise as a periodic function of the phase, which exhibits an intrinsic property of resonant and nonresonant channels in the structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic resonance (SR) induced by the signal modulation is investigated, by introducing the signal-modulated gain into a single-mode laser system. Using the linear approximation method, we detailedly calculate the signal-to-noise ratio (SNR) of a gain-noise model of the single-mode laser, taking the cross-correlation between the quantum noise and pump noise into account. We find that, SR appears in the dependence of the SNR on the intensities of the quantum and the pump noises when the correlation coefficient between both the noises is negative; moreover, when the cross-correlation between the two noises is strongly negative, SR exhibits a resonance and a suppression versus the gain coefficient, meanwhile, the single-peaked SR and multi-peaked SR occur in the behaviors of the SNR as functions of the loss coefficient and the deterministic steady-state intensity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three dimensional analysis of a special class of anisotropic materials is presented. We introduce an extension of the Scattering Matrix Method (SMM) to investigate the behavior of anisotropic Photonic Crystal Slabs (PhCS) subject to external radiation. We show how the Fano effect can play a fundamental role in the realization of tunable optical devices. Moreover, we show how to utilize electron injection, electric field and temperature as parameters to control the Fano resonance shift in both isotropic and anisotropic materials as Si and Potassium Titanium Oxide Phosphate (KTP). We will see that because Fano modes are sensitive and controllable, a broad range of applications can be considered. (c) 2006 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantum well (QW) semiconductor lasers have become main optical sources for optical fibre communication systems because of their higher modulation speed, broader modulation bandwidth and better temperature characteristics. In order to improve the quality of direct-modulation by means of the stochastic resonance (SR) mechanism in QW semiconductor lasers, we investigate the behaviour of the SR in direct-modulated QW semiconductor laser systems. Considering the cross-correlated carrier noise and photon noise, we calculate the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated laser system by using the linear approximation method. The results indicate that the SR always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper, we present a new method of restraining the Fabry-Perot resonance. The method is to combine dip angle with taper angle in the structure of the device and avoids the process of antireflection coatings. The experimental results show that restraining effect is apparent. A high threshold current has been obtained for the sample with both dip angle and taper angle structure. It provides a new method to make traveling-wave optical amplifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasmon resonance absorption of the Ag/SiO2 nanocomposite film is investigated. The measured absorption spectra are compared with those calculated by the Mie theory. The results indicate that the Mie theory on the basis of classical electrodynamics can only partially explain the optical absorption spectra of the Ag/SiO2 nanocomposite film. We believe that the plasmon resonance absorption is mainly an intrinsic quality of the metal particle, and can be explained only with the electronic structure of the metal particle. In the latter, surface resonance state is introduced to systematically discuss the optical absorption spectra of the Ag/SiO2 nanocomposite film. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourth-order spatial interference of entangled photon pairs generated in the process of spontaneous parametric down-conversion pumped by a femtosecond pulse laser has been performed for the first time. In theory, it takes into account the transverse correlation between the two photons and is used to calculate the dependence of the visibility of the interference pattern obtained in Young's double-slit experiment. In this experiment, a short focal length tens and two narrow band interference filters were adopted to eliminate the effects of the broadband pump laser and improve the visibility of the interference pattern under the condition of nearly collinear light and degenerate phase matching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized scattering matrix formalism is constructed to elucidate the interplay of electron resonance, coherence, dephasing, inelastic scattering, and heterogeneity, which play important roles in the physics of long-range electron transfer/transport. The theory consists of an extension of the standard Buttiker phase-breaking model and an analytical expression of the electron transmission coefficient for donor-bridge-acceptor systems with arbitrary length and sequence. The theory incorporates the following features: Dephasing-assisted off-resonance enhancement, inelasticity-induced turnover, resonance enhancement and its dephasing-induced suppression, dephasing-induced smooth superexchange-hopping transition, and heterogeneity effects. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite films consisting of nanosized Ag particles embedded in partially oxidized amorphous Si-containing matrices were prepared by radio frequency magnetron co-sputtering deposition. We studied the influence of ambient atmosphere during the preparation and heat-treatment of Ag/SiOx (0 less than or equal to x less than or equal to 2) nanocompositefilm on its optical absorption properties. We found that the plasmon resonance absorption peak shifts to shorter wavelengths with the increasing oxygen content in the SiOx matrix. The analysis indicates that the potential barrier between Ag nanoparticles and SiOx matrix increases with the increasing x value, which will induce the surface resonance state to shift to higher energy. The electrons in the vicinity of the Fermi level of Ag nanoparticles must absorb more energy to be transferred to the surface resonance state with the increasing x value. It was also found that the plasmon resonance absorption peaks of the samples annealed in different ambient atmospheres are located at about the same position. This is because the oxidation surface layer is dense enough to prevent the oxygen from penetrating into the sample to oxidize the silicon in the inner layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used the transverse correlated properties of the entangled photon pairs generated in the process of spontaneous parametric down-conversion, which is pumped by a femtosecond pulse laser, to perform Young's interference experiment. Unlike the case of a continuous wave laser pump, a broadband pulse laser pump can submerge an interference pattern. In order to obtain a high visibility interference pattern, we used a lens with a tunable focal length and two interference filters to eliminate the effects of the broadband pump laser. It is proven that the process of two-photon direct interference is a post-selection process.