116 resultados para Messenger Force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartee-Fock approximation scheme with the Argonne V-14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the (PF2)-P-3 neutron superfluidity in beta-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V-18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the (PF2)-P-3 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron (PF2)-P-3 pairing gap in pure neutron matter, neutron (PF2)-P-3 gap and neutron-proton (SD1)-S-3 gap in symmetric nuclear matter have been studied by using the Brueckner-Hartree-Fock(BHF) approach and the BCS theory. We have concentrated on investigating and discussing the three-body force effect on the nucleon superfluidity. The calculated results indicate that the three-body force enhances remaxkably the (PF2)-P-3 superfluidity in neutron matter. It also enhances the (PF2)-P-3 superfluidity in symmetric nuclear matter and its effect increases monotonically as the Fermi-momentum k(F) increases, whereas the three-body force is shown to influence only weakly the neutron-proton (SD1)-S-3 gap in symmetric nuclear matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron (PF2)-P-3 pairing gap in pure neutron matter has been studied by using the Brueckner-Hartree-Fock( BHF) approach and the BCS theory. We have concentrated our attention on investigating the three-body force effect on the neutron superfluidity in the (PF2)-P-3 channel. The calculated results indicate that the three-body force enhances remarkably the (PF2)-P-3 superfluidity in neutron matter. When adopting the BHF single-particle spectrum, the three-body force turns out to increase the maximum value of the pairing gap from about 0.22 MeV to about 0.5 MeV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the isospin-dependent Brueckner framework, we investigate the contribution of three-body force ( TBF) rearrangement to isospin symmetry potential as well as its momentum and density dependence. In particular, we investigate the TBF rearrangement effects on the isospin splitting of neutron and proton effective masses in neutron-rich nuclear matter. We show that the rearrangement contribution of TBF to neutron and proton single-particle potentials is repulsive and increases rapidly with increasing density and momentum. At low densities, the influence of the TBF rearrangement on symmetry potential is rather small, and the TBF rearrangement effect becomes more and more pronounced as the density rises. At high densities, the contribution of TBF rearrangement increases considerably the symmetry potential and modifies remarkably the momentum dependence of the symmetry potential. In both cases with and without including the TBF rearrangement contribution, the predicted neutron effective mass in neutron-rich matter is greater than the proton effective mass. The TBF rearrangement effect is to decrease remarkably both the proton and neutron effective masses, and reduce the magnitude of neutron-proton effective mass splitting in neutron-rich matter at high densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of microscopic Brueckner-Hatree-Fock, the contribution of the three-body force (TBF) rearrangement to the. single nucleon potential is calculated. The TBF rearrangement effects on the momentum and the density dependence of the single nucleon potential are investigated. The influence of the TBF rearrangement on the effective mass of nucleon is also discussed. It is shown that the rearrangement contribution of TBF is repulsive and momentum-dependent. The TBF rearrangement effect and its momentum dependence increase rapidly as increasing density and momentum. At high densities and high momenta, the repulsive rearrangement contribution reduces strongly the attraction of the single nucleon potential and enhances considerably the momentum dependence of the single nucleon potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microscopic three-nucleon force consistent with the Bonn B two-nucleon potential is constructed, which includes Delta(1232), Roper, and nucleon-antinucleon excitation contributions. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined. At the high densities,the nuclear equation of state and the symmetry energy are calculated. The corresponding neutron star mass-radius relations are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All messenger-RNA (mRNA) molecules in eukaryotic cells have a polyadenylic acid [poly (rA)] tail at the 3'-end and human poly (rA) polymerase (PAP) has been considered as a tumor-specific target. A ligand that is capable of recognizing and binding to the poly(M) tail of mRNA might interfere with the full processing of mRNA by PAP and can be a potential therapeutic agent. We report here for the first time that single-walled carbon nanotubes (SWNTs) can cause single-stranded poly (M) to self-structure and form a duplex structure, which is studied by UV melting, atomic force microscopy, circular dichroism spectroscopy, and NMR spectrometry.