150 resultados para Measurement of populism
Resumo:
Closely related to the quantum information processing in solid states, we study the quantum measurement of single electron state by a mesoscopic charge-sensitive detector, namely the quantum point contact (QPC). We find that the conventional Lindblad-type master equation is not appropriate for describing the underlying measurement dynamics. The treatment developed in this work properly accounts for the energy-exchange between the detector and the measured system, and its role on the detailed-balance relation. A valid description for the QPC measurement dynamics is provided which may have impact on the study of quantum measurement and quantum feedback control in solid states.
Resumo:
Quantum point contact (QPC), one of the typical mesoscopic transport devices, has been suggested to be an efficient detector for quantum measurement. In the context of two-state charge qubit, our previous studies showed that the QPC's measurement back-action cannot be described by the conventional Lindblad quantum master equation. In this work, we study the measurement problem of a multistate system, say, an electron in disordered potential, subject to the quantum measurement of the mesoscopic detector QPC. The effect of measurement back-action and the detector's readout current are analyzed, where particular attention is focused on some new features and the underlying physics associated with the measurement-induced delocalization versus the measurement voltages.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.
Resumo:
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 mum. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.
Resumo:
To improve the accuracy of measured gain spectra, which is usually limited by the resolution of the optical spectrum analyzer (OSA), a deconvolution process based on the measured spectrum of a narrow linewidth semiconductor laser is applied in the Fourier transform method. The numerical simulation shows that practical gain spectra can be resumed by the Fourier transform method with the deconvolution process. Taking the OSA resolution to be 0.06, 0.1, and 0.2 nm, the gain-reflectivity product spectra with the difference of about 2% are obtained for a 1550-nm semiconductor laser with the cavity length of 720 pm. The spectra obtained by the Fourier transform method without the deconvolution process and the Hakki-Paoli method are presented and compared. The simulation also shows that the Fourier transform method has less sensitivity to noise than the Hakki-Paoli method.
Resumo:
An extended technique derived from triple-axis diffraction setup was proposed to measure lattice parameters of cubic GaN(c-GaN) films. The fully relaxed lattice parameters of c-GaN are determined to be 4.5036+0.0004 Angstrom, which is closer to the values of a hypothetical perfect crystal. The speculated zero setting correction (Deltatheta) is very slight and within the range of the accuracy of measurement. Additionally, we applied this method to analyze strain of four different kinds of c-GaN samples. It is found that in-plane strain caused by large lattice mismatch and thermal expansion coefficients mismatch directly influence the epilayer growth at high temperatures, indicating that the relaxation of tensile strain after thermal annealing helps to improve the crystalline quality of c-GaN films and optical properties. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Epitaxial growth of AlN has been performed by molecular beam epitaxy (MBE) with ammonia. The structural properties of materials were studied by cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). XRD and TEM diffraction pattern confirm the AlN is single crystalline 2H-polytype with the epitaxial relationship of (0001)AlNparallel to(111)Si, [11 (2) over bar0](AlN)parallel to[110](Si), [10 (1) over bar0](AlN)parallel to[11 (2) over bar](Si). Micro-Raman scattering measurement shows that the E-2 (high) and A(1) (LO) phonon mode shift 9 cm(-1) toward the low frequency, which shows the existence of large tensile strain in the AlN films. Furthermore, the appearance of forbidden A, (TO) mode and its anomalous shift toward high frequency was found and explained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
The electron spin resonance (ESR) is optically detected by monitoring the microwave-induced changes in the circular polarization of the neutral exciton (X) and the negatively charged exciton (X-) emission in CdTe quantum wells with low density of excess electrons. We find that the circular polarization of the X and X- emission is a mapping of the spin polarization of excess electrons. By analyzing the ESR-induced decrease in the circular polarization degree of the X emission, we deduce the microwave-induced electron spin-flip time >0.1 mus, which is much longer than the recombination time of X and X-. This demonstrates that the optically detected ESR in type I quantum wells with low density of excess electrons does not obey the prerequisite for the conventional optically detected magnetic resonance. (C) 2001 American Institute of Physics.
Resumo:
The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 +/- 0.19 eV, according to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V : Delta E-C = E-g(GaN) - E-g(Ge) - Delta E-V, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6 +/- 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being -0.30 +/- A 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 +/- A 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices.