164 resultados para Material storages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer,all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here, we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor deposition method.The X-ray double-crystal diffraction rocking curve measurements show the full-width half maximum of 180" and 185" for (0002) symmetric reflection and (10(-1)2) skew reflection,respectively.A room temperature mobility of 850cm2/(V·s) is obtained for a 3μm thick GaN film.Gain guided and ridge geometry waveguide laser diodes are fabricated with cleaved facet mirrors at room temperature under pulse current injection.The lasing wavelength is 405.9nm.A threshold current density of 5kA/cm2 and an output light power over 100mW are obtained for ridge geometry waveguide laser diodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new material structure with Al0.22Ga(>. 78 As/Ino.i5 Gao.ss As/GaAs emitter spacer layer and GaAs/Ino.15-Gao.8ii As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio and the available current density for RTDs at room temperature are computed. Analysis on these results suggests that adjusting material structure and optimizing fabrication processes will be an effective means to improve the quality of RTDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-insulating (SI) InP wafers of 50 and 75mm in diameter can be obtained by annealing of undoped liquid encapsulated Czochralski (LEC) InP at 930 ℃ for 80h. The annealing ambient can be pure phosphorus (PP) or iron phosphide (IP). The IP-SI InP wafers have good electrical parameters and uniformity of whole wafer. However, PP-SI InP wafers exhibit poor uniformity and electrical parameters, Photoluminescence which is subtle to deep defect appears in IP-annealed semi-insulating InP. Traps in annealed SI InP are detected by the spectroscopy of photo-induced current transient. The results indicate that there are fewer traps in IP-annealed undoped SI InP than those in as-grown Fe-doped and PP-undoped SI-undoped SI InP. The formation mechanism of deep defects in annealed undoped InP is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of optical network demands integrated arid multiple functionality modules to lowing cost and acquire highly reliability. Among the various contender materials to be photonic integrated circuits platform, silicon exhibits dominant characteristics and is the most promising platform materials. The paper compares the characteristics of some candidate materials with silicon and reviews recent progress in silicon based photonic integration technology. Tile challenges to silicon for optical integration for optical networking application arc also indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the fabrication of Si-based double hetero-epitaxial SOI materials Si/gamma-Al2O3/Si. First, single crystalline gamma-Al2O3 (100) insulator films were grown epitaxially on Si(100) by LPCVD, and then, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a CVD method similar to silicon on sapphire (SOS) epitaxial growth. The Si/gamma-Al2O3 (100)/Si(100) SOI materials are characterized in detail by RHEED, XRD and AES techniques. The results demonstrate that the device-quality novel SOI materials Si/gamma-Al2O3 (100)/Si(100) has been fabricated successfully and can be used for application of MOS device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.