137 resultados para Lexington, Battle of, Lexington, Mass., 1775.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entrainment rate of ambient gas into a turbulent argon plasma jet generated by plasma torch is directly measured using a “porous-wall chamber” technique. It is shown that with the increase of the mass flow rates of argon at the jet inlet, the mass flow rate of entrained gas increases. The normalized mass flow rate decreases with the increasing inlet mass flow rates of plasma torch. The entrained gas mass flow rate increases with increasing chamber length, but less depends on the arc current of the plasma torch at higher flow rates. The effects of different ways of inflowing gas into plasma torch on entrainment characteristics of plasma jet are also examined in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and optical gain of wurtzite ZnO nanowires are investigated in the framework of effective-mass envelope-function theory. We found that as the elliptical aspect ratio e increases to be larger than a critical value, the hole ground states may change from optically dark to optically bright. The optical gain of ZnO nanowires increases as the hole density increases. For elliptical wire with large e, the y-polarized mode gain can be several thousand cm(-1), while the x-poiarized mode gain may be 26 times smaller than the former, so they can be used as ultraviolet linearly polarized lasers. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures' center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of quantum rods in the absence and presence of the magnetic field are studied in the framework of effective-mass envelope function theory. The two-dimensional (2D) and 1D transition dipoles of wurtzite quantum rods are investigated. It is found that the transition dipoles change from 2D to 1D as the aspect ratio of the ellipsoid increases, in agreement with the experimental results. The linear polarization factors of optical transitions of quantum rods with critical aspect ratio are zero at every orientation of the wave propagation. So quantum rods with critical aspect ratio have isotropic transition dipoles. Due to the 2D or 1D transition dipoles, the linear polarization factors of optical transitions of quantum rods change from negative or positive values to zero as the orientation of the wave propagation changes from the x axis of the crystal structure to the z axis, in agreement with the experimental results. Under magnetic field applied along the z axis of the crystal structure, the negative linear polarization factors in the 2D transition dipole case decrease as the magnetic field increases, while under magnetic field applied along the x axis, the negative linear polarization factors increase as the magnetic field increases. The antisymmetric Hamiltonian is very important to these effects of the magnetic field. It is found that quantum rods with a given radius at a given temperature have dark excitons in a range of aspect ratio. The dimensions along the x, y axes of the crystal structure play opposite roles to the dimension along the z axis on the dark exciton phenomenon. Dark excitons become bright under appropriate magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effects in GaAs/AlxGa1-xAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that the electron and hole energy levels and the optical transition energies can cause blueshifts when the electric field is applied along the opposite to the growth direction. Our calculated results are useful for the application of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subbands of the ground state E-c1, the first excited state E-c2 and heavy hole state E-HH1 are calculated by solving the eigenvalues of effective-mass Hamiltonian H-0 which is derived from eight-band k . p theory and the calculations are performed at k(x) = k, = k = 0 for the three-dimensional array of InGaAs/GaAs quantum dots (QDs). With indium content in InGaAs QDs gradually increasing from 30% to 100%,the intersubband transition wavelength of E-c2 to E-c1, blue-shifts from 18.50 to 11.87 mu m,while the transition wavelength of E-c1, to E-HH1, red-shifts from 1. 04 to 1. 73 mu m. With the sizes of Ir-0.5 Ga-0.5 As and InAs QDs increasing from 1.0 to 5.0 nm, the intersubband transition from E-c1, to E-C2 transforms from bound-state-to-continuum-state to bound-state-to-bound-state, and the corresponding intersubband transition wavelengths red-shift from 8.12 pm (5.90 pm) to 53.47 mu m (31.87 pm), respectively, and the transition wavelengths of E-C1 to E-HH1 red-shift from 1. 13 mu m (1.60 mu m) to 1.27 mu m (2.01 mu m), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method for uniformly calculating the electronic states of a hydrogenic donor impurity in low-dimensional semiconductor nano-structures in the framework of effective-mass envelope-function theory, and we study the electronic structures of this systems. Compared to previous methods, our method has the following merits: (a) It can be widely applied in the calculation of the electronic states of hydrogenic donor impurities in nano-structures of various shapes; (b) It can easily be extended to study the effects of external fields and other complex cases; (c) The excited states are more easily calculated than with the variational method; (d) It is convenient to calculate the change of the electronic states with the position of a hydrogenic donor impurity in nano-structures; (e) The binding energy can be calculated explicitly. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the binding energy of a hydrogenic donor impurity in a rectangular parallelepiped-shaped quantum dot (QD) in the framework of effective-mass envelope-function theory using the plane wave basis. The variation of the binding energy with edge length, position of the impurity, and external electric field is studied in detail. A finite potential model is adopted in our calculations. Compared with the infinite potential model [C. I. Mendoza , Phys. Rev. B 71, 075330 (2005)], the following results are found: (1) if the impurity is located in the interior of the QD, our results give a smaller binding energy than the infinite potential model; (2) the binding energies are more sensitively dependent on the applied electric field in the finite potential model; (3) the infinite potential model cannot give correct results for a small QD edge length for any location of the impurity in the QD; (4) some degeneracy is lifted when the dot is no longer cubic. (C) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.