136 resultados para Knoevenagel condensation
Resumo:
A high-throughput screening system for secondary catalyst libraries has been developed by incorporation of an 80-pass reactor and a quantified multistream mass spectrometer screening (MSMSS) technique. With a low-melting alloy as the heating medium, a uniform reaction temperature could be obtained in the multistream reactor (maximum temperature differences are less than 1 K at 673 K). Quantification of the results was realized by combination of a gas chromatogram with the MSMSS, which could provide the product selectivities of each catalyst in a heterogeneous catalyst library. Because the catalyst loading of each reaction tube is comparable to that of the conventional microreaction system and because the parallel reactions could be operated under identical conditions (homogeneous temperature, same pressure and WHSV), the reaction results of a promising catalyst selected from the library could be reasonably applied to the further scale-up of the system. The aldol condensation of acetone, with obvious differences in the product distribution over different kind of catalysts, was selected as a model reaction to validate the screening system.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.
Resumo:
In this study of the synthesis of SAPO-34 molecular sieves, XRD, SEM, XRF, IR and NMR techniques were applied to monitor the crystalloid, structure and composition changes of the samples in the whole crystallization process in order to get evidence for the crystallization as well as Si incorporation mechanism of SATO-34. XRD results revealed that the crystallization contained two stages. In the first 2.5 h (the earlier stage), high up to similar to80% of relative crystallinity could be achieved and the crystal size of SAPO-34 was almost the same as that of any longer time, indicating a fast crystallization feature of the synthesis. In this stage, IR revealed that the formation of SAPO-34 framework structure was accompanied by the diminution of hydroxyls, suggesting that crystal nuclei of SAPO-34 may arise from the structure rearrangement of the initial gel and the condensation of the hydroxyls. NMR results reveal that the template and the ageing period are crucial for the later crystallization of SAPO-34. Preliminary structure units similar to the framework of SAPO-34 have already formed before the crystallization began (0 h and low temperature). Evidence from IR, NMR, and XRF shows that the formation of the SAPO-34 may be a type of gel conversion mechanism, the solution support and the appropriate solution circumstance are two important parameters of the crystallization of SAPO-34. Meanwhile, NMR measurements demonstrated that about 80% of total Si atoms directly take part in the formation of the crystal nuclei as well as in the growth of the crystal grains in the earlier stage (<2.5 h). Evidence tends to support that Si incorporation is by direct participation mechanism rather than by the Si substitution mechanism for P in this stage (<2.5 h). In the later stage (>2.5 h), the relative content of Si increased slightly with a little decrease of Al and P. The increase of Si(4Al) and the appearance of the Si(3Al), Si(2Al), Si(1Al) and Si(OAl) in this stage suggest that substitution of the Si atoms for the phosphorus and for the phosphorus and aluminum pair takes place in the crystallization. The relationship among structure, acidity and crystallization process is established, which suggests a possibility to improve the acidity and catalytic properties by choosing a optimum crystallization time, thus controlling the number and distribution of Si in the framework of SAPO-34. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film.
Resumo:
A layer-by-layer film composed of DNA and inorganic zirconium ion (Zr4+) was fabricated on the surface of gold thin film, and an electric field triggered disintegration of the multilayer film was studied by using electrochemical surface plasmon resonance (EC-SPR). EC-SPR results demonstrated that the film was disassembled upon the application of an electric field and the disassembly rate varied with the applied potential, leading to the controlled release of DNA. The electrodissolution could be switched off by removing the electric potential and reactivated by reapplying the potential.
Resumo:
Much attention has been paid to carbazole derivatives for their potential applications as optical materials. For the first time, the blue-light-emitting carbazole chromophore has been covalently bonded to the ordered mesoporous SBA-15 (The resultant hybrid mesoporous materials are denoted as carbazole-SBA-15) by co-condensation of tetraethoxysilane (TEOS) and prepared compound 3-[N-3-(triethoxyilyl)propyl]ureyl-9-ethyl-carbazole (denoted as carbazole-Si) in the presence of Pluronic P123 surfactant. The results of H-1 NMR and Fourier transform infrared (FTIR) reveal that carbazole-Si has been successfully synthesized.
Resumo:
A series of acene-type conjugated molecules(1-5) containing 2-6 pyrazine units and up to 16 rectilinearly arranged fused aromatic rings were synthesized by condensation coupling of 1,2-diamines and 1,2-diketones. The energy gap of the molecules estimated from absorption edge decreases with an increase in molecular length, indicating the well-delocalized nature of the molecules. The cyclic voltarnmetry measurements suggest that the n-type properties of these ribbonlike pyrazine derivatives are dependent on the molecular length and the number of the pyrazine units.
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly(L-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%.
Resumo:
A novel water-soluble electroactive polymer, aniline pentamer crosslinked chitosan (Pentamer-c-Chi), was prepared by condensation polymerization of the terminal carboxyl groups in aniline pentamer with the amino side groups in chitosan in aqueous solution. The carboxyl groups were activated by N-hydroxysuccinimide (NHS) and N,N'-dicyclohexylcarbodiimide (I)CC). The electrochemical behavior of aniline pentamer in this kind of crosslinked polymer was studied in acidic aqueous solution by means of cyclic voltammetry (CV), UV-vis, and electron spin resonance (ESR) spectroscopy.
Resumo:
All messenger-RNA (mRNA) molecules in eukaryotic cells have a polyadenylic acid [poly (rA)] tail at the 3'-end and human poly (rA) polymerase (PAP) has been considered as a tumor-specific target. A ligand that is capable of recognizing and binding to the poly(M) tail of mRNA might interfere with the full processing of mRNA by PAP and can be a potential therapeutic agent. We report here for the first time that single-walled carbon nanotubes (SWNTs) can cause single-stranded poly (M) to self-structure and form a duplex structure, which is studied by UV melting, atomic force microscopy, circular dichroism spectroscopy, and NMR spectrometry.
Resumo:
The interaction between HAuCl4 and DNA has enabled creation of DNA-templated gold nanoparticles without formation of large nanoparticles. It was found that spheral DNA-HAuCl4 hybrid of 8.7 nm in diameter, flower-like DNA-HAuCl4 hybrid, nanoparticles chains and nanoparticles network of DNA-HAuCl4 hybrid could be obtained by varying the reaction conditions, including DNA concentration and reaction temperature. The intermediate product was investigated by shortening the reaction time of DNA and HAuCl4, and the obtained nanoparticles preserved a small DNA segment, which indicated that the reaction between DNA and HAuCl4 had a process.
Resumo:
Ternary europium complex Eu(tta)(3)phen was covalently bonded with the general mesoporous. material SBA-15 and SBA-15-type of periodic mesoporous organosilica (PMO) material via impregnation of Eu(tta)(3)center dot 2H(2)O into phen-S15 and phen-PMO, respectively, through a ligand exchange reaction. The parent materials of phen-S15 and phen-PMO were synthesized by co-condensation of tetraethylorthosilicate (TEOS) or 1,2-bis(triethoxysilyl)ethane (BTESE) and the functionalized chelate ligand 5-(N,N-bis(3-triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) in the presence of Pluronic P123 surfactant as template, which were confirmed by SEM, XRD, FTIR, Si-29 CP-MAS NMR, and N-2 adsorption measurements.
Resumo:
A novel periodic mesoporous organosilica (PMO) material was synthesized through one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and benzoic acid-functionalized organosilane (BA-Si) using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent under basic conditions. The materials were fully characterized by FTIR, XRD, N-2 adsorption-desorption isotherms and FESEM. FTIR spectra proved that BA-Si was successfully incorporated into the PMO materials (PMOs) via benzyl group as a linker. XRD and N-2 adsorption-desorption isotherms revealed the characteristic mesoporous structure with highly uniform pore size distributions. FESEM confirmed that the morphology of the PMOs was significantly dependent cri the molar ratio of two organosilica precursors.
Resumo:
Dopamine (2-(3,4-dihydroxyphenyl)ethylamine) is known as a natural chemical neurotransmitter and is also a cytotoxic and genotoxic molecule for cell apoptosis. In this work, the interaction of DNA with dopamine was investigated. Though the electrostatic interaction of DNA and dopamine was weak in aqueous solution, dopamine condensed circular pBR322 DNA into toroids on the mica surface cooperatively with ethanol. The formed DNA toroids came from the shrinking of DNA that was driven by ethanol-enhanced DNA-dopamine electrostatic interaction. The size of the DNA toroids could be modulated by varying the concentration of dopamine. This study offers useful information about the DNA condensation induced by monovalent cations and the sample preparation for AFM measurement and application.