146 resultados para GLASS-PH-ELECTRODE
Resumo:
A reversed-phase high-performance liquid chromatography with series dual glassy carbon electrodes for the amperometric detection of water-soluble menadione is described. The complex post-column derivatization reaction and the high background currents were avoided. The menadione sodium bisulfite was reduced at -0.3 V vs. SCE at the upstream (generator) electrode and oxidized at +0.2V vs. SCE at the downstream (collector) electrode. The mobile phase was 0.2moll(-1) HAc-NaAc aqueous buffer (pH 5.50) and 40% (v/v) methanol. The linear response was in the range of 35 ng to 15 mu g, with a detection Limit of 15 ng (S/N=3). The correlation coefficient was 0.9997 (n=6). The electrochemical detection with series dual electrodes has a higher selectivity for menadione (vitamin K-3) compound than with UV detection.
Resumo:
The electrochemical behavior of flavine adenine dinucleotide (FAD) at a gold electrode involving adsorption of the reduced form FADH(2) and desorption of the oxidized form FAD has been studied by using electrochemical quartz crystal microbalance (EQCM). EQCM can present information not only about the electrochemical behavior but also about the mass changes on the electrode surface. The electrochemical properties and frequency shifts were investigated in FAD solutions at different pH values, concentrations and scan rates. Reversible voltammograms were observed when pH<4.5 and irreversible voltammograms were found when pH greater than or equal to 4.5. It is found to be a diffusion controlled process when the concentration of FAD is lower than 2x10(-4) moll(-1) (pH 1.5). On the contrary, at concentrations higher than 2x10(-4) moll(-1) (pH 1.5), it is found to be an adsorption controlled process.
Resumo:
A stable, well-behaved self-assembled monolayer (SAM) of viologen-functionalized thiol was used to immobilize and electrically connect horseradish peroxidase (HRP) at gold electrode. Viologen groups in SAMs facilitated the electron transfer from the electrode to the protein active site so that HRP exhibited a quasi-reversible redox behavior. HRP adsorbed in the SAMs is very stable, and close to a monolayer with the surface coverage of 6.5 x 10(-11) mol/cm(2). The normal potential of HRP is -580 mV vs Ag/AgCl corresponding to ferri/ferro active center and the standard electron transfer rate constant is 3.41 s(-1) in 0.1 M phosphate buffer solution (pH 7.1). This approach shows a great promise for designing enzyme electrodes with other redox proteins and practical use in tailoring a variety of amperometric biosensor devices. Copyright (C) 1997 Elsevier Science Ltd.
Resumo:
The electrochemical behavior of Dawson-type P2W18O626- adsorbed on a glassy carbon electrode and doped in a polypyrrole film electrode was described. These modified electrodes all display catalytic activity for nitrite reduction, either in acid solutions or in pH > 4.0 solutions.
Resumo:
4-Aminophenol (4-AP), paracetamol (PRCT), norepinephrine (NE), and dopamine (DA) (all somewhat hydrophobic compounds) were HPLC electrochemically detected while the signals from uric acid (UA) and ascorbic acid (AA) (both hydrophilic compounds at the pH studied) were minimized, taking advantage of the permselectivity of the self-assembled n-alkanethiol monolayer (C-10-SAM)-modified Au electrodes based on solute polarity, The effects of various factors, such as the chain length of the n-alkanethiol modifier, modifying time, and pH value, on the permeability of C-10-SAM coatings were examined, The calibration curves, linear response ranges, detection limits, and reproducibilities of the EC detector for 4-AP, PRCT, NE, and DA were obtained, The result shows that the EC detector can be applied in the chromatographic detection of 4-AP, PRCT, NE, and DA in urine, effectively removing the influence of UA and AA in high concentrations existing in biological samples. As a result, a great improvement in the selectivity of EC detectors has been achieved by using Au electrodes coated with neutral n-alkanethiol monolayer.
Resumo:
A cryo-hydrogel membrane (CHM) immobilized at a glassy carbon (GC) electrode is reported for the direct electron transfer of redox proteins. The most attractive characteristics of this CHM were its hydrophilic micro-environment for incorporated proteins to retain their activities, its high ability for protection against interference of denatured and adsorbed proteins at the electrode, its potential applications for various proteins or enzymes, as well as its high mechanical strength and thermal stability. A clear well developed and stable redox wave was obtained for commercially available horse heart myoglobin without further purification, giving a peak to peak separation Delta E(p) = 93 mV at 5 mV s(-1) and the formal electrode potential E(0)' = -0.158 V (vs. Ag/AgCl). The formal heterogeneous electron transfer rate constant was calculated as k(0)' = 5.7 X 10(-4) cm s(-1) at pH 6.5, showing rapid electron transfer was achieved. The pH controlled conformational equilibria, acid state --> natural state --> basic I state --> basic II state, of myoglobin at the CHM GC electrode in the pH range 0-13.8 were also observed and are discussed in detail.
Resumo:
The electrocatalytic oxidation of NADH by ferrocene derivatives and the influence of complexation with beta-cyclodextrin (beta-CD) were investigated at a microdisk electrode in a buffer solution. The cyclic voltammetric behavior of the ferrocene derivatives on the microdisk electrode was used to determine the electron-transfer rate constant from NADH to the ferricinium species. The heterogeneous rate constants and the diffusion coefficient of ferrocene derivatives were determined with the microdisk electrode. The effect of temperature and pH on the electrocatalytic oxidation of NADH were assessed.
Resumo:
A chemically modified electrode (CME) constructed by adsorption of aquocobalamin (VB12a) onto a glassy carbon electrode surface was demonstrated to catalyze the electro-oxidation of cysteine, a sulfhydryl-containing compound. The sulfhydryl oxidation occured at 0.54-0.88 V vs. Ag/AgCl depending on pH value (3.0-10.0). The electrocatalytic behavior of cysteine is elucidated with respect to solution pH, operating potential and other variables as well as the CME preparation conditions. When used as the sensing electrode in flow injection amperometric detection, the CME permitted detection of the compound at 0.8 V. The detection limit was 1.7 pmol. The linear response range went up to 1.16 nmol. The stability of the CME was shown by RSD (4.2%) over 10 repeated injections.
Resumo:
In this paper, the electrochemical behaviour of molibdosilicic heteropoly complex with dysprosium K10H3[Dy(SiMo11O39)(2)]. xH(2)O [denoted as Dy(SiMo11)(2)] was studied. Voltammetric behavior of this complex was greatly influenced by pH of solutions. The polypyrrole (PPy) film doped with this complex was prepared by electropolymerization of pyrrole in the presence of Dy(SiMo11)(2) under potential cycling conditions. The microenvironment within the PPy film has an effect on the electrochemical behavior of Dy(SiMo11)(2) entrapped in the film. The film electrode can catalyze the reduction of ClO3- and BrO3-.
Resumo:
The electrooxidation of ascorbic acid (AA) at the bis(4-pyridyl)disulfide (PySSPy) modified gold electrode was studied. The results showed that the oxidation process was pH-dependent. It was mainly due to the static interaction between AA and the modified
Resumo:
Electrocatalytic oxidation of sulfhydryl compounds was effective on a copper hexacyanoferrate (CuHCF) film glassy carbon electrode, at a significantly reduced overpotential (0.55 to 0.65 V) and for a broader pH range (2.0 to 7.0). The electrocatalysis was
Resumo:
In this paper, the electrochemical behavior of vitamin B-12, ie cyanocobalamin (abbr. VB12) in a weak acidic aqueous solution and adsorbed on glassy carbon (GC) surface (abbr. VB12(ad)/GC) in different pH buffer solutions have been described by using cyclic voltammetry (cv). It is found that VB12 and VB12(ad)/GC exhibit catalytic activity for the electroreduction of O2 according to two reduction peaks at -0.50 and -1.00 V vs. sce; but their electrocatalytic activity is very unstable. Based on the method of hydrodynamic amperometry [B. Miller and S. Bruckenstein, J. electrochem. Soc. 117, 1033 (1970)], some kinetic parameters for the electrocatalytic reduction of O2 by VB12(ad)/GC have been determined rapidly by using a linear rotation-scan method [Rongzhong Jiang and Shaojun Dong, Electrochim. Acta 35, 1451 (1990)]. These kinetic parameters indicate that the reduction of O2 on VB12(ad)/GC gives water predominantly in both potential ranges which correspond to those two reduction peaks. Possible reaction mechanisms have been suggested.
Resumo:
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
Functionalized polypyrrole films were prepared electrochemically in the presence of indigo-carmine from aqueous solution. The film shows a couple of reversible redox peaks superimposed on a large background of polypyrrole. The redox reaction is pH dependent. The film has good stability in air and can be cycled between -0.1 and 0.4 V (Ag/AgCl) for several hours without any significant changes in the voltammograms. UV-visible spectra indicate the incorporation of indigo-carmine into the polymer matrix.