192 resultados para Foliated Semi-symmetric Hypersurfaces
Resumo:
In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.
Resumo:
On the basis of the finite element approach, we systematically investigated the strain field distribution of conical-shaped InAs/GaAs self-organized quantum dot using the two-dimensional axis-symmetric model. The normal strain, the hydrostatic strain and the biaxial strain components along the center axis path of the quantum dots are analyzed. The dependence of these strain components on volume, height-over-base ratio and cap layer (covered by cap layer or uncovered quantum dot) is investigated for the quantum grown on the (001) substrate. The dependence of the carriers' confining potentials on the three circumstances discussed above is also calculated in the framework of eight-band k (.) p theory. The numerical results are in good agreement with the experimental data of published literature.
Resumo:
Contactless electroreflectance (CER) and photoreflectance (PR) measurements have been performed on samples with the structure of an n-doped GaAs epitaxial layer on a semi- insulating GaAs substrate. Modulated reflectance signals from the n-GaAs surface and those from the n-GaAs/SI-GaAs interface are superposed in PR spectra. For the case of CER measurement, however, Franz-Keldysh oscillations (FKOs) from the interface, which are observed in PR spectra, cannot be detected. This discrepancy is attributed to different modulation mechanisms of CER and PR. In CER experiments, the electric field modulation cannot be added to the interfacial electric field because of the effective screening by the fast response of carriers across the interface. FKOs from the interface without any perturbation by the surface signals are extracted by subtracting CER spectra from PR spectra.
Resumo:
Using the Huang-Zhu model [K. Huang and B.-F. Zhu, Phys. Rev. B 38, 13377 (1988)] for the optical phonons and associated carrier-phonon interactions in semiconductor superlattices, the effects of longitudinal electric field on the energy-loss rates (ELRs) of hot carriers as well as on the hot-phonon effect (HPE) in GaAs/AlAs quantum wells (QWs) are studied systematically. Contributions of various bulklike and interface phonons to the hot-carrier relaxation are compared in detail, and comprehensively analyzed in relation to the intrasubband and intersubband scatterings for quantum cascade lasers. Due to the broken parity of the electron (hole) states in the electric field, the bulklike modes with antisymmetric potentials are allowed in the intrasubband relaxation processes, as well as the modes with symmetric potentials. As the interface phonon scattering is strong only in narrow wells, in which the electric field affects the electron (hole) states little, the ELRs of hot carriers through the interface phonon scattering are not sensitive to the electric field. The HPE on the hot-carrier relaxation process in the medium and wide wells is reduced by the electric field. The influence of the electric field on the hot-phonon effect in quantum cascade lasers is negligible. When the HPE is ignored, the ELRs of hot electrons in wide QWs are decreased noticeably by the electric field, but slightly increased by the field when considering the HPE. In contrast with the electrons, the ELRs of hot holes in wide wells are increased by the field, irrespective of the HPE. (c) 2006 American Institute of Physics.
Resumo:
Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Resumo:
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called 'negativity'. We strictly show that for any temperature the entanglement is symmetric with respect to zero magnetic field. The behavior of negativity is presented for four different cases. We find that the entanglement may be enhanced under a nonuniform magnetic field. Because there is not any necessary and sufficient condition for quantum separability in systems of dimension 3 circle times 3, our results are qualitative, not quantitative. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction under a magnetic field in an arbitrary direction is investigated. Negativity, the measurement of entanglement is calculated. We find that for any temperature the evolvement of negativity is symmetric with respect to magnetic field. The behavior of negativity is presented for four different cases. The results show that for different temperature; different magnetic field give maximum entanglement. Both the parallel and antiparallel magnetic field cases are investigated qualitatively (not quantitatively) in detail, we find that the entanglement may be enhanced under an antiparallel magnetic field.
Resumo:
We have investigated the annealing and activation of silicon implanted in both as-grown Fe-doped semi-insulating (SI) InP substrate and undoped SI InP substrate obtained by annealing high purity conductive InP wafer (wafer-annealed). Si implantations were performed at an energy of 500 keV and a dose of 1 X 10(15) cm(-2). Following the implantations, rapid thermal annealing (RTA) cycles were carried out for 30 s at different temperatures. The results of Raman measurements show that for 700degreesC/30s RTA, the two Si-implanted SI InP substrates have acquired a high degree of lattice recovery and electrical activation. However, further Hall measurements indicate that the carrier concentration of the wafer-annealed SI InP substrate is about three times higher than that of the as-grown Fe-doped SI InP substrate. The difference can be ascribed to the low Fe concentration of the wafer-annealed SI InP substrate.These experimental data imply that the use of the wafer-annealed SI InP substrate can be conducive to the improvement of InP-based device performances. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The problem of frequency limitation arising from the calibration of asymmetric and symmetric test fixtures has been investigated. For asymmetric test fixtures, a new algorithm based on the thru-short-match (TSM) method is outlined. It is found that the conventional TSM method does not have any inherent frequency limitation, but using the same procedure with an unknown match may lead to the said problem. This limitation can be avoided by using a different algorithm. The various calibration methods for symmetric test fixtures using known standards are also discussed and the origin of the frequency limitation is identified. Several ways in avoiding the problem are proposed. There is good agreement between the theories and experimental data.
Resumo:
We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.
Resumo:
Tensile-strained InAlAs layers have been grown by solid-source molecular beam epitaxy on as-grown Fe-doped semi-insulating (SI) InP substrates and undoped SI InP substrates obtained by annealing undoped conductive InP wafers (wafer-annealed InP). The effect of the two substrates on InAlAs epilayers and InAlAs/InP type II heterostructures has been studied by using a variety of characterization techniques. Our calculation data proved that the out-diffusion of Fe atoms in InP substrate may not take place due to their low diffusion, coefficient. Double-crystal X-ray diffraction measurements show that the lattice mismatch between the InAlAs layers and the two substrates is different, which is originated from their different Fe concentrations. Furthermore, photoluminescence results indicate that the type II heterostructure grown on the wafer-annealed InP substrate exhibits better optical and interface properties than that grown on the as-grown Fe-doped substrate. We have also given a physically coherent explanation on the basis of these investigations. (C) 2003 Elsevier Science B.V. All rights reserved.