96 resultados para Deposition of subglacial till
Resumo:
Microstructure of GaN buffer layer grown on (111)MgAl2O4 substrate by metalorganic vapor phase epitaxy (MOVPE) was studied by transmission electron microscopy (TEM). It has been observed that the early deposition of GaN buffer layer on the substrate at a relatively low temperature formed a continual island-sublayer (5 nm thick) with hexagonal crystallographic structure, and the subsequent GaN buffer deposition led to crystal columns which are composed of nano-crystal slices with mixed cubic and hexagonal phases. After high-temperature annealing, the crystallinity of nano-crystal slices and island-sublayer in the buffer layer have been improved. The formation of threading dislocations in the GaN him is attributed not only to the lattice mismatch of GaN/MgAl2O4 interface, but also to the stacking mismatches at the crystal column boundaries. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Hybrid composites composed of zinc phthalocyanine embedded in silicon matrixes have attracted attention because of the potential for solar energy conversion. We produce hybrid composites by thermal evaporation for the plithalocyanine and PECVD (Plasma Enhanced Chemical Vapor Deposition) for the silicon matrix. Deposition of ZnPc/a-Si(amorphous silicon) composites was achieved in a sequential manner. The compound films were characterized by optical transmittance spectra and photoconductivity measurement. The optical transmittance measurements were carried out in the visible region (500 - 800 nm). Compared to pure silicon film, the photosensitivity of compound functional films was enhanced by one order of magnitude. This demonstrates the Si sensitized by adding ZnPc.
Resumo:
A detailed reaction-tran sport model was studied in a showerhead reactor for metal organic chemical vapor deposition of GaN film by using computational fluid dynamics simulation. It was found that flat flow lines without swirl are crucial to improve the uniformity of the film growth, and thin temperature gradient above the suscptor can increase the film deposition rate. By above-mentioned research, we can employ higher h (the distance from the susceptor to the inlet), P (operational pressure) and the rate of susceptor rotation to improve the film growth.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The interface of Ti/InP(110) was studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). It is evident that deposition of Ti on the surface of InP(110) at room temperature introduced a break of the In-P bond and a diffusion of In atoms into the Ti film. The interaction of Ti and P occurred at a temperature of 350-degrees-C.
Resumo:
The Raman and photoreflectivity spectra of gallium nitride (GaN) films grown on (0001) oriented sapphire substrates by gas source molecular beam epitaxy (GSMBE) have been investigated. The Raman spectra showed the presence of the E-2(high) mode and a shift in the wavenumber of this mode with respect to the GaN epilayer thickness. The Raman scattering results suggest the presence of stress due to lattice and thermal expansion misfit in the films, and also indicate that the buffer layer play an important role in the deposition of high quality GaN layers. The residual stress changes from tensile to compressive as the epilayer thickness increases. Samples subjected to anneal cycles showed an increase in the mobility due probably to stress relaxation as suggested by an observed shift in the E-2(high) mode in the Raman spectra after annealing.
Resumo:
We report a novel technique for growing high-quality GaAs on Si substrate. The process involves deposition of a thin amorphous Si film prior to the conventional two-step growth. The GaAs layers grown on Si by this technique using metalorganic chemical vapor deposition exhibit a better surface morphology and higher crystallinity as compared to the samples gown by conventional two-step method. The full width at half maximum (FWHM) of the x-ray (004) rocking curve for 2.2 mu m thick GaAs/Si epilayer grown by using this new method is 160arcsec. The FWHM of the photoluminescence spectrum main peak for this sample is 2.1 meV. These are among the best results reported so far. In addition, the mechanism of this new growth method was studied using high-resolution transmission electron microscopy.
Resumo:
Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the mean height of Quantum dots. Uniformity of quantum dots has been enhanced because the full width of half maximum of photoluminescence decrease from 80meV to 27meV in these samples as the interruption time increasing from 0 to 120 second. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time. This effect can be used to control the energy level of quantum dots. The phenomena mentioned above can be attributed to the diffusion of In atoms from the top of InAs islands to the top of GaAs cap layer caused by the difference of surface energies between InAs and GaAs.
Resumo:
We described the use of silica nanoparticles as building blocks for the immobilization of electrogenerated chemiluminescence (ECL) reagent Ru(bpy)3" and the fabrication of layer-by-layer assembly film by alternating the deposition of the Ru(bpy)3 2'-doped silica nanoparticles and Au nanoparticles.
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.
Resumo:
A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.
Resumo:
A hybrid material based on Pt nanoparticles (Pt NPs) and multi-walled carbon nanotubes (MWNTs) was fabricated with the assistance of PEI and formic acid. The cationic polyelectrolyte PEI not only favored the homogenous dispersion of carbon nanotubes (CNTs) in water, but also provided sites for the adsorption of anionic ions PtCl42- on the MWNTs' sidewalls. Deposition of Pt NPs on the MWNTs' sidewalls was realized by in situ chemical reduction of anionic ions PtCl42- with formic acid. The hybrid material was characterized with TEM, XRD and XPS. Its excellent electrocatalytic activity towards both oxygen reduction in acid media and dopamine redox was also discussed.
Resumo:
In the present study, platinum nanoparticles modified with Prussian blue (PB) have been synthesized by a heterogeneous catalytic reaction. Transmission electronic microscopy (TEM) confirmed the deposition of nanoclusters around the Surfaces of platinum particles, and spectroscopic studies verified that the molecular composition of the nanoclusters was dominantly PB and a minority of platinum ferricyanide. Thus, it was shown that the platinum particles behaved not only as catalysts for the growth of PB, but also as a reactant to generate a PB analogue complex.
Resumo:
Chemically converted graphene (CCG)/3,4,9,10-perylene tetracarboxylic acid (PTCA)/Au-ionic liquid (Au-IL) composites (CCG/PTCA/Au-IL) have been prepared by a chemical route that involves functionalization of CCG with PTCA followed by deposition of Au-IL. Transmission electron microscopy revealed well-distributed Au with a high surface coverage. The identity of the hybrid material was confirmed through X-ray diffraction and X-ray photoelectron spectroscopy. The CCG/PTCA/Au-IL composites exhibited good electrocatalytic behavior toward oxygen reduction. The results indicate that modification of CCG with Au-IL could play an important role in increasing the electrocatalytic activity of CCG.
Resumo:
A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.