112 resultados para Bone Cell Adhesion, Ion-implanted, Titanium Discs, Argon ions, Adhesion and Proliferation, Osteoblast growth, Cell Adhesion
Resumo:
To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.
Resumo:
The dynamics of the plasma ions in the wake fields of short, ultraintense laser pulses in underdense plasmas are investigated analytically and numerically. Owing to the large ion-to-electron mass ratio, the motion of plasma ions in-such wake fields has often been assumed to be neglectable. It is shown that when the laser intensity exceeds 10(20) W/cm(2), the ion motion can no longer be ignored. In this case, ion momentum peaks appear behind the laser pulse, which correspond with the ion density peaks. The laser-excited wake field appears to be effective for ion acceleration, in particular to ions with high-charge numbers. The dependence of ion acceleration on the laser intensity, pulse width, and background plasma density is discussed. (c) 2006 Optical Society of America.
Resumo:
The TiOx thin films were prepared by electron beam evaporation using TiO as the starting material. The effect of the annealing temperature on the optical and electrical properties was investigated. The spectra of X-ray photoelectron spectroscopy reveal that Ti in the films mainly exist in the forms of Ti2+ and Ti3+ below 400 degrees C 24h annealing. The charge transfer between different titanium ion contribute greatly to the color, absorption, and electrical resistance of the films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Single-phase gadolinium disilicide was fabricated by a low-energy ion-beam implantation technique. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine the composition and chemical states of the film. The structure of the sample was analyzed by X-ray diffraction and the surface morphology was investigated by scan electron microscopy. Based on the measurements, only orthorhombic GdSi2 phase was found in the sample and the surface morphology was pitting. After annealing at 350degreesC for 30 min at Ar atmosphere, the full-width at half-maximum of GdSi2 became narrower. It indicates that the GdSi2 is crystallized better after annealing. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Mn ions were doped into InAs/GaAs quantum dots samples by high energy. implantation and subsequent annealing. The optical and electric properties of the samples have been studied. The photoluminescence intensity of the samples annealed rapidly is stronger than that of the samples annealed for long time. By studying the relationship between the photoluminescence peaks and the implantation dose, it can be found that the photoluminescence peaks of the quantum dots show a blueshift firstly and then move to low energy with the implantation. dose increasing. The latter change in the photoluminescence peaks is probably attributed to that Mn ions entering the InAs quantum dots, which release the strain of the quantum dots. For the samples implanted by heavy dose (annealed rapidly) and the samples annealed for long time, the resistances versus temperature curves reveal anomalous peaks around 40 K.
Resumo:
Deep level transient spectroscopy measurements were used to characterize the electrical properties of metal organic chemical vapor deposition grown undoped, Er-implanted and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300 eV, 0.188 eV, 0.600 eV and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280 eV, 0.190 eV, 0.610 eV and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30min. The origins of the deep defect levels are discussed. After annealing at 900 degrees C for 30min in a nitrogen flow, Er-related 1538nm luminescence peaks could be observed for the Er-implanted GaN sample. The energy-transfer and luminescence mechanism of the Er-implanted GaN film are described.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
High-frequency vibrational modes have been observed at liquid-helium temperature in silicon samples grown in a H-2 or D-2 atmosphere. The highest-frequency ones are due to the overtones and combination modes of SiH fundamentals. Others are CH modes due to (C,H) complexes, but the simultaneous presence of NH modes due to (N,H) complexes cannot be excluded. The present results seem to show also the existence of centers including both SiH and CH or NH bonds. One sharp mode at 4349 cm-l is related to a weak SiH fundamental at 2210 cm(-1). The related center is ascribed to a vacancy fully decorated with hydrogen with a nearest-neighbor C atom. [S0163-1829(99)00911-X].
Resumo:
The Raman spectra of ion-implanted highly oriented pyrolytic graphite (HOPG) are reported, in which an additional mode at 1083 cm(-1) and three doublet structures in the positions of similar to 1350, similar to 2450, and similar to 2710 cm(-1) are revealed. Noticeable frequency shifts are observed for all the Raman bands between the spectra excited with different laser powers, which are interpreted as the pure temperature effect and a downshift in the C-C stretching frequency induced by the thermal expansion. Moreover, the pure temperature effect (d omega/dT)(V) without anharmonic contribution is achieved in pristine HOPG. The results suggest that the pure temperature effect without anharmonic contribution plays an important role in the frequency shifts with temperature. (C) 1999 American Institute of Physics. [S0003-6951(99)01313-3].
Resumo:
Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.
Resumo:
Several vibrational bands were observed near 3100 cm(-1) in GaN that had been implanted with hydrogen at room temperature and subsequently annealed, Our results indicate that these bands are due to nitrogen-dangling-bond defects created by the implantation that an decorated by hydrogen, The frequencies are close to those predicted recently for V-Ga-H-n complexes, leading us to tentatively assign the new lines to V-Ga defects decorated with different numbers of H atoms. (C) 1998 American Institute of Physics. [S0003-6951(98)03614-6].