76 resultados para Bilateral
Resumo:
Previous studies have witnessed some psychological or behavioral deviation (such as aggressive behavior) might have an association with cerebral hemisphere cooperative dysfunction, however, it is still unclear whether there is an association between individuals with social cognitive bias and their hemispheric cooperative functions especially while the interhemisphere cooperative processing is under the conditions of emotional interferences. The purpose of this study is to explore the differences between the social cognitive bias group and the normal group’s interhemispheric cooperative functional activity under the conditions of with or without interferences. Methods: According to Dodge’s (1993) model of “social-cognitive mechanisms in the development of conduct disorder and depression”, a 51 items of “social cognitive bias scale” was created and was used to screen the high score group. 20 male subjects was composed of high score group and other 23 matched the control group. Stimulus tachistoscopically presented to the bilateral visual field and compared with the central. Both group’s interhemispheric cooperative functional activity were observed and compared under the conditions of without interference- i.e. base level and with the emotional interferences of white noise level and negative evaluative feedback speech level while finishing: experiment one: Chinese word-figure Stroop analogue task; experiment two: two single Chinese Characters combination task. Heart rate and respiratory rate were simultaneously recorded as index of emotional changes. Results: ① The high score group showed a decrease in processing accuracy compared with the normal group under the condition of white noise interference level in experiment one. ② Still under the condition of white noise interference level, there were more reaction time and more errors were observed in high score group than normal in experiment two. ③ Both groups showed speed up effect and the strategic processing tendency of speed-accuracy trade-off effect under the condition of white noise interference level in both experiments. ④ Between group differences of interhemipheric cooperative function were not observed under the conditions of base level and the negative evaluative feedback speech level within both experiments. Conclusion: The results suggested that interhemispheric cooperative functional differences exists between the two groups, characterized as ① differences existed in interhemispheric cooperative processing strategy between the two groups, with the high score group presented “hierarchic” deficiency strategy. ② the appearance of the differences between the two groups were condition specified , and in this research it was only under the white noise interference condition. ③ the features of the differences between the two groups were the differences on multidimensional performances and with a deficit orientation in high score group. ④ the varieties of the differences were changing with cooperative tasks, as in this research the high score group performed worse in complementary cooperative task. In addition, both group adjusted the processing strategy respectively under the condition of white noise evoked emotional interference implied that the interaction between the interhemisphere cooperative processing and emotion might exist.
Resumo:
Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.
Resumo:
Since the 19th century, people have long believed that the function of cerebellum was restricted to fine motor control and modulation. In the past two decades, however, more and more studies challenged this traditional view. While the neuroanatomy of the cerebellum from cellular to system level has been well documented, the functions of this neural organ remain poorly understood. This study, including three experiments, attempted to further the understanding of cerebellar functions from different viewpoints. Experiment One used the parametric design to control motor effects. The activation in cerebellum was found to be associated with the difficulty levels of a semantic discrimination task, suggesting the involvement of the cerebellum in higher level of language functions. Moreover, activation of the right posterior cerebellum was found to co-vary with that of the frontal cortex. Experiment Two adopted the cue-go paradigm and event-related design to exclude the effects of phonological and semantic factors in a mental writing task. The results showed that bilateral anterior cerebellum and cerebral motor regions were significantly activated during the task and the hemodynamic response of the cerebellum was similar to those of the cerebral motor cortex. These results suggest that the cerebellum participates in motor imagination during orthographic output. Experiment Three investigated the learning process of a verb generation task. While both lateral and vermis cerebellum were found to be activation in the task, each was correlated a separate set of frontal regions. More importantly, activations both in the cerebellum and frontal cortex decreased with the repetition of the task. These results indicate that the cerebellum and frontal cortex is jointly engaged in some functions; each serves as a part of a single functional system. Taken these findings together, the following conclusions can be drawn: 1.The cerebellum is not only involved in functions related to speech or articulation, but also participates in the higher cognitive functions of language. 2.The cerebellum participates in various functions by supporting the corresponding regions in cerebral cortex, but not directly executes the functions as an independent module. 3.The anterior part of cerebellum is related to motor functions, whereas the posterior part is involved in cognitive functions. 4.While the motor functions rely on the engagement of both sides of the cerebellar hemispheres, the higher cognitive functions mainly depend on the right cerebellum.
Resumo:
In recent years, the deficit of inhibition has become an important reason for explaining addiction. Response inhibition resembles the compulsive drug seeking behavior and it is the basement of addiction inhibition deficits. However, there were no enough evidence for the relationship between addiction and response inhibition deficits and the results of the neuro mechanisms studies remains unclear. Few studies has focused on the exploring the heroin users. Among those paradigms for study response inhibition deficits, stop signal is a very suitable model for the representation of compulsive drug seeking, but only a few researches has worked on this paradigm. In this study, we selected about 100 heroin abusers and had behaviour and neuro imaging scannings for investigating the response inhibition deficits. The behaviour researches found: first, the chronic heroin users had longer reaction time than control group and this reaction time were not affected by stop signals in heroin users. Second, heroin users had less waiting time than control group and they were more impulsive but less flexibility. Their erro monitoring and flexibale adjustment ability decreased. Third, the SSRT of heroin users was significantly longer than control group. These results suggested that the inhibition of heroin users were impaired. Further investigation showed that the SSRT of heroin users had positive correlation of four factor scores of ASI and the macro correlation coefficient was factor three of drug use. This correlation suggested that drug use was the main reason of inhibition deficits. fMRI results mainly focused on the ANOVA analysis for group difference. First, there was no intensity difference in M1 and SMA brain areas between the two groups. Second, heroin users had less activation in right dorsalateral prefrontal cortex, right inferior prefrontal cortex and anterior cingulated cortex, while in bilateral striatum and amygdala, heroin users had more activation than control group. The right prefrontal cortex was indentified as the main inhibition brain area. The anterior cingulated cortex has relationship with erro monitoring and amygdale was an important brain area for impulsivity and emotion control. The network of these brain areas was envovled in impulsivity and inhibition and it was suggested the mainly damaged network for heroin users’ disinhibition. We also investigated the gray matter changes of heroin users and found that chonic heroin use made their gray matter density decreased in prefrontal cortex (including bilateral dorsalateral prefrontal cortex, obital frontal cortex, inferior prefrontal cortex) and anterior cingulated cortex. The gray matter density in these brain regions had negative correlation with drug use duration. In conclusion, we indentified the disinhibition of heroin users and its neuro mechanism. Their compulsivity brain areas had more activation than control group and their inhibition brain areas had less activation than normal control. On the other side, the biological mechanism of this activation changes was the gray matter density decrease in these brain areas.
Resumo:
In the present study, based on processing efficiency theory, we used the event-related potentials (ERP) and functional magnetic resonance image (fMRI) techniques to explore the underlying neutral mechanism of influences of negative emotion on three subsystems of working memory, phonological loop、 visuospatial sketh pad and the central executive. The modified DSMT (delayed matching-to-sample task) and n-back tasks were adopted and IAPS (International Affective Picture System) pictures were employed to induce the expected emotional state of subjects. The main results and conclusions obtained in the series of experiments are as the following: 1. In DSM tasks, we found P200 and P300 were reduced by negative emotion in both spatial and verbal tasks, however the increased negative slow wave were only observed in spatial tasks, not in verbal tasks. 2. In n-back tasks, the updating function of WM associated P300 was affected by negative emotion only in spatial tasks, not in verbal tasks. Current density analysis revealed strong current density in the fronto-parietal cortex only in the spatial tasks as well. 3. We adopted fMRI-block design and ROIs analysis, and found significant emotion and task effects in spatial WM-associated right superior parietal cortex; only emotion effect in verbal WM-associated Broca’s area; the interaction effect in attention-associated medial prefrontal area and bilateral inferior parietal cortex. These results implied the negative emotion mainly disturbed the spatial WM-related areas, and the attention control system play a key role in the interaction of spatial WM and negative emotion. 4. to further examine the effects of positive、negative and neutral emotion on tasks with different cognitive loads, the selective effect of emotion on the ERP components of spatial WM was only found in 2-back tasks, not in visual searching tasks. So, firstly the positive emotion as well as negative emotion selectively disturbed on spatial WM in light of the attention resource competition mechanism. Secondly, the selective influences based on the different WM systems, not the properties of spatial and verbal information. At last, the manner of the interaction of emotion and cognition is correlated with the cognitive load.
Resumo:
Zeigarnik effect refers to the enhanced memory performance for unfinished tasks and studies on insight using hemi-visual field presentation technology also find that after failing to solve an problem, hints to the problem are more effective received and lead to insight experience when presented to the left-visual field (Right hemisphere) than presented to the right-visual field, especial when the hints appeared with a delay. Thus, it seems that right hemisphere may play an important role in preserving information of unsolved problems and processing related cues. To further examine the finding above, we introduce an Chinese character chunking task to investigate the brain activities during the stage of failure to resolve problems and of hint presentation using Event-Related Potentials (ERP) and functional MRI technology. Our FMRI results found that bilateral BA10 showed more activation when seeing hints for unsolved problems and we proposed that it may reflect the processes of information to failure problems, howerver, there was no hemispheric difference. The ERP results after the effort to the problems showed that unsolved problems elicited a more positive P150 over the right frontal cortex while solved problems demonstrated a left hemispheric advantage of P150. When hints present, P2 amplitudes of hints were modulated by the status of problem only in the right hemisphere but not in the left hemisphere. Our results confirmed the hypothesis that failure to solve problems would trigger the perseverance processes in right hemisphere, which would make right hemisphere more sensitive to related information of failure problems.
Resumo:
This study explores hemispheric processing and relations during the homophone matching. In the literature summary, we review the past studies employing Tachistoscopic Presentation of Divided View Field (DVF) to the two hemispheres cooperation, and point out the different and complex opinions about both homophone matching and hemispheric processing. to some focuses, we handle this study by six behavioral experiments. First, under the condition of stimulus presenting simultaneously and function of graphic/semantic dimension, we study the bilateral/unilateral processing efficiency, the function on the level of synonym/similar grapheme. Main result shows, during homophone matching, bilateral processing is better than unilateral one, i.e., bilateral processing advantage rises. For further study whether the effects of transferring information between hemispheres will change along the time, combining with the paradigm of Priming, we make the stimulus present in the certain order; and under the function of graphic/semantic dimension, we also study the bilateral/unilateral processing efficiency, the function on the level of synonym/similar grapheme. Results show, there is semantic/graphic information which brings effects on homophone matching transferring between two hemispheres. And semantic/graphic information can be affected with the time, for example, when SOA = 210ms, the effect of semantic/graphic information disappears. When homophone present in the sequence, bilateral processing advantage also disappears, there are no significant differences between bilateral processing and unilateral one. In addition, we also explore whether sex differences exist during bilateral homophone matching, and we get, there are no significant differences between different sex. Among all experimental results, we also find several special phenomenon as the following example: 1) when stimuli presenting simultaneously during homophone matching on the level of synonym/similar grapheme, the processing effect of LVF(Left View Field) is better than RVF (Right View Field). 2) when stimuli presenting simultaneously, during homophone matching on the level of synonym/similar grapheme, one hemisphere may inhibit the other (because of the interference). to wrap up, under certain condition bilateral processing advantage is obtained, and during the interhemispheric interaction when homophone matching, some kind of information will relay between two hemispheres. And when two hemispheres cooperate, mutual inhibition (or interference) also follows. Further, interhemispheric interaction is closely connected with time, the attribution of stimuli, and so on. At last, a model is put forward to describe the coordinated process and the possible relations between two hemispheres.
Resumo:
The cognition and memory functions of the Basal Ganglia have been the focus of contemporary cognitive neuroscience researches. This study, from neuroanatomical and neurophysiological point of view, thoroughly surveyed the recent relevant research progress, carefully examined the evidences of the neurological basis for the Basal Ganglia possessing or participating cognition or memory functions. Moreover, it reviewed recent achievements on the cognitive functions of the basal ganglia based on researches on rodent animals, primate animals and human beings. Then it presented a series of experiments conducted, by neuropsychological and cognitive psychological methods, on neurological patients with focal lesions to the basal ganglia or combining with bilateral hippocampus or thalamus impaired to explore what the role of the basal ganglia play in human explicit and implicit memory. It was found that the lesions to the basal ganglia partially handicapped explicit verbal memory and completely impaired perceptual priming. It was also found that right cerebral cortex dysplasia but basal ganglia spared had no effects on priming tasks performances. The results suggested that the basal ganglia contain or accommodate higher cognitive functions and further suggested that priming be irrelevant to right cerebral cortex. It was posited that the basal ganglia, on the basis of interaction with prefrontal or temporal cortices, mediate movement function as well as cognition and memory functions.
Resumo:
Separate groups of rats with bilateral or unilateral lesions in septum were tested for acquisition and retention of the Morris water maze spatial cognitive task. Some of the animals in each lesion group received preoperative training in the task. Other animals in each group received no preoperative training. The results indicate that although both lesions lead to a spatial cognitive impairment in both the acquisition and retention of the task, the animals with bilateral lesions were more severely impaired than were the animals with unilateral, as indicated by quantitative measure. Searching strategies were used as an index to eximine the qualitative difference in the animals swim be havior, we found that the unilateral damaged animals still tend to use "mapping" strategies to solve the task as in the case of control groups but the accuracy is lower. The searching strategies used by the bilateral damaged animals showed complex patterns. The acquisition group with bilateral tend to use random and paratic strategies, however, the retention group with bilateral had a tendacy to use paratic and taxic strategies. The difference between searching strategies and its dynamic, change possibly suggest that other cognitive processing systems play an role in the processing of information about the task.