70 resultados para Art metal-work
Resumo:
This work was supported by the National Science Foundation of China (60976008 and 60776015), the Special Funds for Major State Basic Research Project (973 program) of China (2006CB604907), and the 863 High Technology R&D Program of China (2007AA03Z402 and 2007AA03Z451). The authors express their appreciations to Prof. Yongliang Li (Analytical and Testing Center, Beijing Normal University) for FE-SEM measurements, to DrTieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.
Resumo:
The Fermi-level pinning (FLP) at the metal/high-k interface and its dependence on the electron state density of the metal gate are investigated. It is found that the FLP is largely determined by the distortion of the vacuum level of the metal which is quantitatively ruled by the electron state density of the metal. The physical origin of the vacuum level distortion of the metal is attributed to an image charge of the interface charge in the metal. Such results indicate that the effective work function of the metal/high-k stack is also governed by the electron state density of the metal.
Resumo:
An electrically bistable device has been fabricated using nanocomposite films consisting of silver nanoparticles and a semiconducting polymer by a simple spin-coating method. The current-voltage characteristics of the as-fabricated devices exhibit an obvious electrical bistability and negative differential resistance effect. The current ratio between the high-conducting state and low-conducting state can reach more than 103 at room temperature. The electrical bistability of the device is attributed to the electric-filed-induced charge transfer between the silver nanoparticles and the polymer, and the negative differential resistance behavior is related to the charge trapping in the silver nanoparticles. The results open up a simple approach to fabricate high quality electrically bistable devices by doping metal nanoparticles into polymer.
Resumo:
The highly charged ion Ar-40(16+) with the velocity (kinetic energy E (K)=150 keV, velocity V=8.5x10(5) m/s) smaller than Bohr velocity (V (Bohr)=2.9x10(6) m/s) was found to hove impacts on the surfaces of metals Ni, Mo, Au and Al, and the Ar atomic infrared light lines and X-rays spectra were simultaneously measured. The experimental results show that the highly charged ion that captures electrons is neutralized, and the multiply-excited hollow atom forms. The hollow atom cascade decay radiates lights from infrared to X-ray spectrum. The intensity of infrared lights shows that the metallic work functions play an important role in the neutralization process of highly charged ions during their interaction with metallic surfaces, which verifies the classical over-the-barrier model.
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.
Resumo:
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.
Resumo:
In this work we present a permeable base transistor consisting of a 60 nm thick N,N'diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine layer or a 40 nm thick 2,6-diphenyl-indenofluorene layer as the emitter, a CalAl/Ca multilayer as the metal base, and p-Si as collector. In the base, the Ca layers are 5 nm thick and the Al layer was varied between 10 and 40 nm. the best results obtained with a 20 nm thick layer. The devices present common-base current gain with both organic layer and silicon acting as emitter, but there is only observable common-emitter current gain when the organic semiconductor acts as emitter. The obtained common-emitter current gain, similar to 2, is independent on collector-emitter voltage, base current and organic emitter in a reasonable wide interval. Air exposure or annealing of the base is necessary to achieve these characteristics, indicating that an oxide layer is beneficial to proper device operation.
Resumo:
The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid over charcoal-supported transition metal catalysts in supercritical CO2 medium has been studied in the present work. The cyclohexanecarboxylic acid can be produced efficiently in supercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increases the reaction rate and several parameters have been discussed.
Resumo:
A novel hard material of (W0.5Al0.5)C-0.5 has been successfully sintered under high-pressure (4.5 GPa). The influence of sintering time and temperature on the microstructure, Vickers microhardness and density of the as-prepared specimens are well described. Interestingly, sintering temperature has an amazing influence on the hardness, density and microstructure of the specimen while the sintering time does not. It is found that the most suitable sintering condition from our work is 1600 degrees C and 10 min under pressure of 4.5 GPa. The hardness and relative density of the as-prepared sample can reach 2340 kg mm(-2) and 98.62%, respectively. The cell parameters of the sintered specimen is found to be little smaller than that of the powder, which we propose is related to the high pressure.
Resumo:
The present work revealed that the praseodymium( II ) complex of 2-carboxyethylgermanium sesquioxide (Ge-132) promotes the hydrolysis of the phosphodiester linkages of 3',5'-cyclic adenosine monophosphate (cAMP), 3' , 5'-cyclic deoxyadenosine monophosphate (dcAMP), 5'-adenosine monophosphate(5'-AMP) and 5'-deoxyadenosine monophosphate (5'-dAMP) under mild conditions. Both cAMP and dcAMP were hydrolyzed site-specifically, yielding predominantly 3'-monophosphates, the main products of the cleavage of 5'-AMP and 5'-dAMP included adenosine (Ado). deoxyadenosine (dAdo) and free phosphates respectively. A hydrolytic mechanism was proposed for cAMP, dcAMP, 5'-AMP and 5'-dAMP.