168 resultados para Absorption costing
Resumo:
The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.
Resumo:
A novel butt-joint coupling scheme is proposed to improve the coupling efficiency for the integration of a GalnAsP MQW distributed feedback (DFB) laser with an MQW electro-absorption modulator (EAM). The proposed method gives more than 90% coupling efficiency, being much higher than the 26% coupling efficiency of the common MQW-MQW coupling technique. The differential quantum efficiency of the MQW-bulk-MQW coupled device is also much higher than that of the MQW-MQW device, 0.106 mW/mA versus 0.02 mW/mA. The EAM-DFB devices fabricated by the proposed method exhibit a very high modulation efficiency (12 dB/V) from 0 to I V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.28 pF. The experimental results demonstrate that the method can replace the conventional MQW-MQW coupling technique to fabricate high-quality integrated photonic devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.
Resumo:
We have investigated the intersubband absorption for spatially ordered and non-ordered quantum dots (QDs). It is found that the intersubband absorption of spatially ordered QDs is much stronger than that of non-ordered QDs. The enhanced absorption is attributed to the improved size uniformity concurrent with the spatial ordering for the growth condition employed. For the FTIR measurement under normal incidence geometry, using a undoped sample as reference can remove the interference effect due to multiple reflections. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less nonsaturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer Of SiO2 and a high reflectivity film Of Si/(SiO2/Si)(4) were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)(4) is proved to be helpful for high output power. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The plasmon resonance absorption of the Ag/SiO2 nanocomposite film is investigated. The measured absorption spectra are compared with those calculated by the Mie theory. The results indicate that the Mie theory on the basis of classical electrodynamics can only partially explain the optical absorption spectra of the Ag/SiO2 nanocomposite film. We believe that the plasmon resonance absorption is mainly an intrinsic quality of the metal particle, and can be explained only with the electronic structure of the metal particle. In the latter, surface resonance state is introduced to systematically discuss the optical absorption spectra of the Ag/SiO2 nanocomposite film. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Nanocomposite films consisting of nanosized Ag particles embedded in partially oxidized amorphous Si-containing matrices were prepared by radio frequency magnetron co-sputtering deposition. We studied the influence of ambient atmosphere during the preparation and heat-treatment of Ag/SiOx (0 less than or equal to x less than or equal to 2) nanocompositefilm on its optical absorption properties. We found that the plasmon resonance absorption peak shifts to shorter wavelengths with the increasing oxygen content in the SiOx matrix. The analysis indicates that the potential barrier between Ag nanoparticles and SiOx matrix increases with the increasing x value, which will induce the surface resonance state to shift to higher energy. The electrons in the vicinity of the Fermi level of Ag nanoparticles must absorb more energy to be transferred to the surface resonance state with the increasing x value. It was also found that the plasmon resonance absorption peaks of the samples annealed in different ambient atmospheres are located at about the same position. This is because the oxidation surface layer is dense enough to prevent the oxygen from penetrating into the sample to oxidize the silicon in the inner layer.
Resumo:
The self-organization growth of In0.32Ga0.68As/GaAs quantum dots (QDs) superlattices is investigated by molecular beam epitaxy. It is found that high growth temperature and low growth rate are favorable for the formation of perfect vertically aligned QDs superlattices. The aspect ratio (height versus diameter) of QD increases from 0.16 to 0.23 with increase number of bi-layer. We propose that this shape change play a significant role to improve the uniformity of QDs superlattices. Features in the variable temperature photoluminescence characteristics indicate the high uniformity of the QDs. Strong infrared absorption in the 8-12 mum was observed. Our results suggest the promising applications of QDs in normal sensitive infrared photodetectors. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.
Resumo:
Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. (C) 2001 American Institute of Physics.
Resumo:
We demonstrate that by increasing the amount of (In, Ga)As deposit in a quantum dot layer, the intersublevel absorption wavelength for (In, Ga)As/GaAs quantum-dot infrared photodetectors can be blue-shifted from 15 to 10 mu m while the photoluminescence peak is red-shifted. We directly compare the measured energy spacing between intersublevels obtained from infrared absorption spectroscopy with those obtained from photoluminescence spectroscopy. We find that the intersublevel energy spacing determined from absorption measurements is much larger than that obtained from the photoluminescence measurements. (C) 2000 American Institute of Physics. [S0003-6951(00)04524-1].
Resumo:
We have investigated the interband electron transitions in a GaNAs/GaAs single quantum well (QW) by photoluminescence and absorption spectra. The experimental results show that the dominant photoluminescence at low temperature and high excitation intensity originates from transitions within the GaNAs layer. The interband transition energy for QWs with different well widths can be well fitted if a type-II band line up of GaNAs/GaAs QWs is assumed. (C) 2000 American Institute of Physics. [S0003-6951(00)03220-4].
Resumo:
Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.