93 resultados para reciprocal potentiation
Resumo:
The allelopathic interactions between Potamogeton maackianus and toxic cyanobacteria (Microcystis aeruginosa) were studied. P maackianus inhibited the growth of M. aeruginosa, both in a coexistence culture system and in exudates experimental culture system. M. aeruginosa also showed effects on the secondary metabolic biosynthesis and secreting behavior of P maackianus. The main lipophilic components of the hexane extracts and the exudates from the macrophyte were analyzed through GC-MS determination. The lipophilic components of the hexane extracts and the exudates from P. maackianus were influenced by M. aeruginosa or their released chemicals. Comparing the lipophilic constituents of the hexane extracts with those in the exudates, the results showed that weak polar compounds contained in the macrophytes can be secreted into the surrounding water. Many compounds, such as N-phenyl-2-naphthalenamine and isopropyl myristate, were detected both in the hexane extracts and the exudates. The changes of lipophilic components in the hexane extracts would be a response to the stress of toxic cyanobacteria or their released toxins. Those changes of exudates, especially the increased content of N-phenyl-2-naphthalenamine, might also be an induced defensive behavior mediated by the released toxins from M aeruginosa. The study results about reciprocal allelopathic responses between macrophytes and cyanobacteria can help in the management of eutrophic waters, and is also important information concerning strategies for recovering eutrophic waters.
Resumo:
A computer program, QtUCP, has been developed based on several well-established algorithms using GCC 4.0 and Qt (R) 4.0 (Open Source Edition) under Debian GNU/Linux 4.0r0. it can determine the unit-cell parameters from an electron diffraction tilt series obtained from both double-tilt and rotation-tilt holders. In this approach, two or more primitive cells of the reciprocal lattice are determined from experimental data, in the meantime, the measurement errors of the tilt angles are checked and minimized. Subsequently, the derived primitive cells are converted into the reduced form and then transformed into the reduced direct primitive cell. Finally all the patterns are indexed and the least-squares refinement is employed to obtain the optimized results of the lattice parameters. Finally, two examples are given to show the application of the program, one is based on the experiment, the other is from the simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Under normal incidence of circularly polarized light at room temperature, a charge current with swirly distribution has been observed in the two-dimensional electron gas in Al0.25Ga0.75N/GaN heterostructures. We believe that this anomalous charge current is produced by a radial spin current via the reciprocal spin Hall effect. It suggests a new way to research the reciprocal spin Hall effect and spin current on the macroscopic scale and at room temperature.
Resumo:
We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.
Resumo:
We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a systematic description of the methods for calibrating microwave network analyzer and test fixtures, and discusses the problems arising in the calibration. The general criteria for choosing calibration standards and corresponding algorithms are discussed and suggestions to overcome these problems and improve the calibration accuracy are also given. It has been found that for reciprocal test fixtures, the four equations obtained with the thru standard can be used at the same time. Meanwhile, the calibration accuracy can be improved. It has been shown that using the same calibration procedures but different algorithms may lead to the occurrence of frequency limitation.
Resumo:
Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.
Resumo:
Microtwins in the 3C-SiC films grown on Si(0 0 1) by atmosphere pressure chemical vapor deposition (APCVD) were investigated in detail using X-ray four-circle diffractometry. The Phi scan shows that 3C-SiC films can grow on Si substrates epitaxially and epitaxial relationship is revealed as (0 0 1)(3C) (SiC)parallel to (0 0 1)(Si),[1 1 1](3C-SiC)parallel to [1 1 1](Si). Other diffraction peaks at about 15.8 degrees in x emerged in the pole figures of the (I 1 1) 3C-SiC. We performed the pole figure of (1 0 (1) over bar 0)h-SiC and the reciprocal space mapping from the (1 1 1) reciprocal lattice point of base SiC to the (0 0 2) point of microtwin for the first time, indicating that the diffraction peaks at 15.8 degrees in x result from not hexagonal SiC but microtwins of 3C-SiC, and twin inclusions are estimated to be around 1%. (C) 2001 Published by Elsevier Science B.V.
Resumo:
A determination of {1 1 1}A and {1 1 1}B in cubic GaN(c-GaN) was investigated by X-ray diffraction technique in detail. The c-GaN films are grown on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition(MOCVD). The difference of integrated intensities measured by omega scan for the different order diffractions from {1 1 1}A and {1 1 1}B planes in the four-circle diffractometer gives convincing evidence as to which is the {1 1 1}A and which is the {1 1 1}B planes. The lesser deviation between the ratios of /F-h k l/(2)//F-(h) over bar (k) over bar (l) over bar/(2) and the calculated values after dispersion correction for atomic scattering factor shows that the content of parasitic hexagonal GaN(h-GaN) grown on c-GaN{1 1 1}A planes is higher than that on {1 1 1}B planes. The reciprocal space mappings provide additional proof that the h-GaN inclusions in c-GaN films appear as lamellar structure. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Being an established qualitative method for investigating presence of additional phases in single crystal materials, X-ray diffraction has been used widely to characterize their structural qualities and to improve the preparation techniques. Here quantitative X-ray diffraction analysis is described which takes into account diffraction geometry and multiplicity factors. Using double-crystal X-ray four-circle diffractometer, pole figures of cubic (002), {111} and hexagonal {10 (1) over bar0} and reciprocal space mapping were measured to investigate the structural characters of mixed phases and to obtain their diffraction geometry and multiplicity factors. The fractions of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {10 (1) over bar0} and hexagonal {10 (1) over bar1}. Without multiplicity factors, the calculated results are portions of mixed phases in only one {111} plane of cubic GaN. Diffraction geometry factor can eliminate the effects of omega and X angles on the irradiated surface areas for different scattered planes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Microtwins in the 3C-SiC films grown on Si(001) by APCVD were analyzed in detail using an X-ray four-circle diffractometer. The empty set scan shows that 3C-SiC films can grow on Si substrates epitaxially and the epitaxial relationship is revealed as (001)(3C-SiC)//(001)(Si), [111](3C-SiC)//[111](Si). Other diffractions emerged in the pole figures of the (111) 3C-SiC. We performed the (10 (1) over bar0) h-SiC and the reciprocal space mapping of the (002) plane of twins for the first time, finding that the diffractions at chi = 15.8 degrees result from not hexagonal SiC but microtwins of 3C-SiC, and twin inclusions are estimated to be 1%.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004) components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyser crystal is placed in front of the detector. Moreover, the peak broadening was analysed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113) components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 +/- 0.001nm.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.