69 resultados para radiation effects
Resumo:
Dependence of performances of non-line-of-sight (NLOS) solar-blind ultraviolet (UV) communication systems on atmosphere visibility is investigated numerically by correlating the propagation of UV radiation with the visibility. A simplified solar-blind UV atmospheric propagation model is introduced, and the NLOS UV communication system model is constituted based on the single scattering assumption. Using the model, numerical simulation is conducted for two typical geometry configurations and different modulation formats. The results indicate that the performance of the NLOS UV communication system is insensitive to variation of visibility in quite a large range, and deteriorates significantly only in very low-visibility weather, and is also dependent on the geometry configuration of the system. The results also show that the pulse position modulation (PPM) is preferable due to its high-power efficiency to improve the system performance. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Laser conditioning effects of the HfO2/SiO2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multishot laser radiation were investigated. The HfO2/SiO2 AR coatings were prepared by E-beam evaporation (EBE). The singleshot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly > 80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to < 5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.
Resumo:
The attenuation coefficient of photosynthetically available radiation [K-d(PAR)] and three water quality parameters [chlorophyll a (chl a)], chromophoric dissolved organic matter (CDOM) and tripton] were measured at three stations in shallow, subtropical Lake Donghu from April 2003 to March 2004. The multiple regression equation of K-d(PAR) versus chl a, CDOM, and tripton was: K-d(PAR) = 0.44 + 0.019 chl a + 1.88 CDOM + 0.016 tripton, which revealed the relative contributions of the three parameters to K-d(PAR). The effects of water and CDOM on K-d(PAR) were of minor importance (19-26%), while chl a and tripton were the two greatest contributors, accounting collectively for 74-81%.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Based on the phase-conjugate polarization interference between two one-photon processes. When the laser has broadband linewidth, the sum-frequency polarization beat (SFPB) signal shows the autocorrelation of SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum-frequency of energy-levels. It hits been also found that the asymmetric behaviors of the polarization beat signals result from the unbalanced dispersion effects, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A radially polarized beam focused by a high-numerical-aperture (NA) objective has a strong longitudinal and nonpropagating electric field in the focal region, which implies that it is suitable for axial optical trapping. In this paper, we use the vectorial diffraction integral to represent the field distribution of the radially polarized beam focused by a high-NA objective and then employ the T-matrix method to compute the radiation forces on spherical particles. Effects of different parameters, such as the size of the sphere, the inner radius of the radially polarized beam, and the NA of the objective, on the radiation forces are presented.
Resumo:
The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.
Resumo:
The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.
Resumo:
Silicon-on-insulator (SOI) technologies have been developed for radiation-hardened military and space applications. The use of SOI has been motivated by the full dielectric isolation of individual transistors, which prevents latch-up. The sensitive region for charge collection in SOI technologies is much smaller than for bulk-silicon devices potentially making SOI devices much harder to single event upset (SEU). In this study, 64 kB SOI SRAMs were exposed to different heavy ions, such as Cu, Br, I, Kr. Experimental results show that the heavy ion SEU threshold linear energy transfer (LET) in the 64 kB SOI SRAMs is about 71.8 MeV cm(2)/mg. Accorded to the experimental results, the single event upset rate (SEUR) in space orbits were calculated and they are at the order of 10(-13) upset/(day bit).
Resumo:
Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.
Resumo:
To estimate the biological risks from space radiation encountered by cosmonauts in outer space, the effects from whole-body exposure to carbon ions or X-rays irradiations at 0, 0.39, 0.55 and 1 Gy at a dose rate of 0.2 Gy/min were investigated in BALB/c mice. The relative thymus and spleen weights were measured at 24 h after exposure, and the cell cycle distribution and percentage of apoptosis of thymocytes and spleen and peripheral blood lymphocytes were determined by flow cytometry. The data showed that exposure to carbon ions delayed cell progression of peripheral blood lymphocytes in S-phase, and delayed thymocytes and spleen lymphocytes in G(0)/G(1)-phase. Apoptosis of thymocytes and peripheral blood lymphocytes induced by carbon ions increased more rapidly with dose than was the case for X-rays. There were some differences between the relative weight loss of the thymus and the spleen with increasing dose of either carbon ions or X-rays. The results obtained provide evidence of dose- and organ-specific differences induced by carbon ions compared to X-rays, with increased apoptosis in peripheral blood lymphocytes and thymocytes, but not spleen lymphocytes. Our data may suggest that further work would be of interest to estimate risk of changes in immune function during particle radiation exposures in space travel. (c) 2007 COSPAR
Resumo:
The temperature dependences of the light output of CsI(Tl) crystal grown at IMP and of the gain of the Hamamatsu S8664-1010 avalanche photodiode (APD) have been investigated systematically. The light output of the CsI(Tl) crystal increases with temperature by 0.67%/degrees C in the region from -2 degrees C to 8 degrees C, and by 0.33%/degrees C in the region from 8 degrees C to 25 degrees C, while the gain of the tested APD decreases by -3.68%/degrees C (working voltage 400V) on average in the room temperature range. The best energy resolution 5.1% of the CsI(Tl) with APD was obtained for the 662keV gamma ray from Cs-137 radiation source.
Resumo:
To investigate the protective effects of melatonin against high-LET ionizing radiation, V79 Chinese hamster cells were irradiated with 100 keV/mu m carbon beam. Parallel experiments were performed with 200 kV X-rays. To avoid the impact from extra solvents, melatonin was dissolved directly in culture medium. Cells were cultured in melatonin medium for 1 hr before irradiation. Cell inactivation was measured with conventional colony forming assay, medium containing 6-thioguanine was used for the selection of mutants at hprt locus, and the cell cycle was monitored by flow cytometry. Both carbon beam and X-rays induced cell inactivation, hprt gene mutation and cell cycle G2 block dose-dependently. But carbon beam showed stronger effects as indicated by all three endpoints and the relative biological effectiveness (RBE) was 3.5 for cell killing (at 10% survival level) and 2.9 for mutation induction (at 5 x 10(-5) mutants/ cell level). Melatonin showed protective effects against ionizing radiation in a dose-dependent manner. In terms of cell killing, melatonin only increased the survival level of those samples exposed to 8Gy or larger of X-rays or 6 Gy or larger of carbon beam. In the induction of hprt mutation and G2 block, melatonin reduced such effects induced by carbon beam but not by X-rays. The results suggest that melatonin reduces the direct interaction of particles with cells rather than an indirect interaction. Further studies are required to disclose the underlying mechanisms.
Resumo:
The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.