125 resultados para effective field theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, GdFeCo/DyFeCo exchange-coupled double-layer films used for center aperture type magnetically induced super resolution were investigated through experiments and theoretical calculation. The samples were prepared by magnetron sputtering method. The polar Kerr effect was measured to prove the spin reorientation of the readout layer. Theoretical study of magnetization profiles was performed on the basis of the mean-field theory and the continuum model. The theoretical results showed that the magnetization orientation of the readout layer changed gradually from in-plane to out-of-plane with the rise of the temperature. Theoretical analysis explained the experimental results successfully. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用Berreman特征矩阵方法,通过数值计算研究了双折射薄膜的反射、透射等光谱响应特性。依据电磁场理论的电场分量、磁场分量的界面连续条件,推导了光波在各向异性双轴薄膜中的Berreman转移矩阵,用以分析含有各向异性介质层的复杂薄膜系统的光学性质。这些矩阵递推关系包含了界面处的多点反射,适用于一般的各向异性的多层膜系统,包括入射媒质或基底为各向异性的情况。在文中给出了各向同性入射媒质双轴各向异性膜层一各向同性基底薄膜系统的计算结果,验证了该计算方法的可行性,以此作为进一步研究各向异性薄膜和相关光学薄膜器

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effective medium theory is useful for designing optical elements with form birefringent subwavelength structures. Thin films fabricated by oblique deposition are similar to the two-dimensional surface relief subwavelength gratings. We use the effective medium theory to calculate the anisotropic optical properties of the thin films with oblique columnar structures. The effective refractive indices and the directions are calculated from effective medium theory. It is shown that optical thin films with predetermined refractive indices and birefringence may be engineered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a new type of resonant Brewster filters (RBF) with surface relief structure for the multiple channels is first presented by using the rigorous coupled-wave analysis and the S-matrix method. By tuning the depth of homogeneous layer which is under the surface relief structure, the multiple channels phenomenon is obtained. Long range, extremely low sidebands and multiple channels are found when the RBF with surface relief structure is illuminated with Transverse Magnetic incident polarization light near the Brewster angle calculated with the effective media theory of sub wavelength grating. Moreover, the wavelengths of RBF with surface relief structure can be easily shifted by changing the depth of homogeneous layer while its optical properties such as low sideband reflection and narrow band are not spoiled when the depth is changed. Furthermore, the variation of the grating thickness does not effectively change the resonant wavelength of RBF, but have a remarkable effect on its line width, which is very useful for designing such filters with different line widths at desired wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

导模共振滤波器由于其高峰值反射率,低旁带反射,窄带以及带宽可控等优良特性引起了人们极大的关注,采用亚波长光栅的导模共振效应可以实现传统基于高低折射率介质的多层膜滤波器所无法实现的特殊功能,在弱调制模式下,其共振带宽可以被压缩到零点几纳米,但是由于介质表面和空气层的菲涅耳反射,使得偏离或者远离共振区时的反射率偏高,根据等效介质理论,亚波长光栅在远离共振区可以被看为均匀的薄膜,本文通过对导模共振光栅进行单层、双层以及三层抗反射设计,有效的降低了导模共振光栅的旁带反射率,从而在可见光波段获得了性能优良的共振滤波器.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the electron-hole pair confined in a simplified infinite potential. The low-lying excition states in a ZnO cylindrical nanodisk are calculated based on effective-mass theory. To further understand the optical properties, we calculate the linear optical susceptibilities chi(w) and the radiative recombination lifetime tau of excitons in a ZnO nanodisk. The exciton radiative lifetime in a cylindrical nanodisk is of the order of tens of picoseconds, which is small compared with the lifetime of bulk ZnO material. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3006134]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels are sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R-1 and TSQR's inner radius R-2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure and exciton states of cylindrical ZnO nanorods with radius from 2 to 6 nm are investigated based on the framework of the effective-mass theory. Using the adiabatic approximation, the exciton binding energies taking account of the dielectric mismatch are solved exactly when the total angular momentum of the exciton states L = 0 and L = +/- 1. We find that the exciton binding energies can be enhanced greatly by the dielectric mismatch and the calculated results are almost consistent with the experimental data. Meanwhile, we obtain the optical transition rule when the small spin-obit splitting Delta(so) of ZnO is neglected. Furthermore, the radiative lifetime and linear optical susceptibilities chi(w) of the exciton states are calculated theoretically. The theoretical results are consistent with the experimental data very well. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3125456]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on our experimental research on diphasic silicon films, the parameters such as absorption coefficient, mobility lifetime product and bandgap were estimated by means of effective-medium theory. And then computer simulation of a-Si: H/mu c-Si: H diphasic thin film solar cells was performed. It was shown that the more crystalline fraction in the diphasic silicon films, the higher short circuit density, the lower open-circuit voltage and the lower efficiency. From the spectral response, we can see that the response in long wave region was improved significantly with increasing crystalline fraction in the silicon films. Taking Lambertian back refraction into account, the diphasic silicon films with 40%-50% crystalline fraction was considered to be the best intrinsic layer for the bottom solar cell in micromorph tandem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate plasmon excitations in a quantum wire that consists of an infinite one-dimensional array of vertically coupled InAs/GaAs strained quantum dots (QDs). The research is carried out in the framework of random-phase approximation using effective-mass theory. Our formalism is capable of studying plasmons with strong tunneling among QDs, which frustrate the conventionally adopted tight-binding approximation. Based on this formalism, a systematic study on the intraminiband or intrasubband plasmon in vertically coupled InAs/GaAs strained QDs is presented. It is found that an increase of the dot spacing will inevitably reduce the plasmon energy. In contrast, the role of dot height is relatively complex and depends on the dot spacing. The results demonstrate the possibility to engineer collective excitations in low dimensional systems by simply changing their geometric configuration.