254 resultados para Ultra-thin film
Resumo:
10 mu m-thick ultra-thin Si (111) membranes for GaN epi-layers growth were successfully fabricated on silicon-on-insulator (SOI) substrate by backside etching the handle Si and buried oxide (BOX) layer. Then 1 mu m-thick GaN layers were deposited on these Si membranes by metal-organic chemical vapor deposition (MOCVD). The crack-free areas of 250 mu m, x 250 mu m were obtained on the GaN layers due to the reduction of thermal stress by using these ultra-thin Si membranes, which was further confirmed by the photoluminescence (PL) spectra and the simulation results from the finite element method calculation by using the software of ANSYS. In this paper, a newly developed approach was demonstrated to utilize micromechanical structures for GaN growth, which would improve the material quality of the epi-layers and facilitate GaN-based micro electro-mechanical system (MEMS) fabrication, especially the pressure sensor, in the future applications. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper has systematically investigated the substrate temperature and thickness dependence of surface morphology and magnetic property of CrAs compound films grown on GaAs by molecular-beam epitaxy. It finds that the substrate temperature affects the surface morphology and magnetic property of CrAs thin film more potently than the thickness.
Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells
Resumo:
Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America
Resumo:
A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).
Resumo:
InAs quantum dots (QDs) were grown On Ultra-thin In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (00 1) substrates. Combining reflection high-energy electron diffraction, atomic force microscopy and transmission electron microscopy, we analyzed the stress field of dislocations in the strained layer/substrate interface. Specially, we revealed the relative position of QDs and dislocations. We found that the difference of the stress field around dislocations is prominent when the strained layer is ultra-thin and the stress field will directly affect the following growth. On the strained layer surface, In0.15Ga0.85As ridges will form at the inclined upside of dislocations. Then, InAs QDs will prefer nucleating on the ridges, there is relatively small stress between InAs and In0.15Ga0.85As. By selecting ultra-thin In0.15Ga0.85As layer (50 nm) and controlling the QD layer at just form QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report on improved electrical properties of lead zirconate titanate (PZT) film deposited on titanium metal foil using nitrogen annealing. After nitrogen annealing of the PZT capacitors, symmetric capacitance-voltage (C-V) characteristics, higher dielectric constant and breakdown field, less change of dielectric constant with frequency, lower dielectric loss and leakage current are obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.
Resumo:
Illustrated in this paper are two examples of altering planar growth into self-assembled island formation by adapting experimental conditions. Partial oxidation, undersaturated solution and high temperature change Frank-Van der Merwe (FM) growth of Al0.3Ga0.7As in liquid phase epitaxy (LPE) into isolated island deposition. Low growth speed, high temperature and in situ annealing in molecular beam epitaxy (MBE) cause the origination of InAs/GaAs quantum dots (QDs) to happen while the film is still below critical thickness in Stranski-Krastanow (SK) mode. Sample morphologies are characterized by scanning electron microscopy (SEM) or atomic force microscopy (AFM). It is suggested that such achievements are of value not only to fundamental researches but also to spheres of device applications as well. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The phase transition between thermodynamically stable hexagonal wurtzite (h-WZ) gallium nitride (GaN) and metastable cubic zinc-blende (c-ZB) GaN during growth by radio-frequency planar magnetron sputtering is studied. GaN films grown on substrates with lower mismatches tend to have a h-WZ structure, but when grown on substrates with higher mismatches, a c-ZB structure is preferred. GaN films grown under high nitrogen pressure also tend to have a h-WZ structure, whereas a c-ZB structure is preferred when grown under low nitrogen pressure. In addition, low target-power growth not only helps to improve hexagonal GaN (h-GaN) crystalline quality at high nitrogen pressure on low-mismatch substrates, but also enhances cubic GaN (c-GaN) quality at low nitrogen pressure on high-mismatch substrates. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200 degrees C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. (c) 2006 American Institute of Physics.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The violet/blue PL at room temperature and lower temperature was observed from the CeO2 thin film. After the analysis of crystal structure and valence in the compound was carried out by the XRD and XPS technique, it was inferred that the origin of CeO2 PL was due to the electrons transition from Ce4f band to O2p band and the defect level to O2p band. And these defects levels were located in the range of 1 eV around Ce4f band.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
A novel electroluminescence oxide phosphor (Gd2O3-Ga2O3):Ce has been prepared by electron beam evaporation. The emission peaks of photoluminescence lie at 390nm and a shoulder at 440nm. However, the electroluminescence of the (Gd2O3-Ga2O3):Ce thin film have four emission peaks at 358nm, 390nm, 439nm and 510nm, respectively. The optical absorption of (Gd2O3-Ga2O3):Ce thin film and the photoluminescence of composite materials with various ratios of Ga2O3/(Gd2O3+Ga2O3) have also been described to investigate the origin of emission of photoluminescence and electroluminescence.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films in which the range of the weight percent of 3-(1,1-dicyanothenyl)-1-phenyl-4, 5- dihydro-1H-pryazole (DCNP) is from 20% to 50% were prepared. The predicted high value of electro-optical (EO) coefficient gamma(33) = 48.8 pm/V by using two-level model was obtained when the weight percent of DCNP in the polymer system is 40%, whereas EO coefficients are attenuated at higher chromophore loading then 40%. The temporal stability of the EO activity of the guest-host polymer was evaluated by probing the decay of the orientational order of the chromophores in the polymer system.