121 resultados para Trapping
Resumo:
A novel optoelectronic quotient-selected modified signed-digit division technique is proposed. This division method generates one quotient digit per iteration involving only one shift operation, one quotient selection operation and one addition/subtraction operation. The quotient digit can be selected by observing three most significant digits of the partial remainder independent of the divisor. Two algorithms based on truth-table look-up and binary logic operations are derived. For optoelectronic implementation, an efficient shared content-addressable memory based architecture as well as compact logic array processor based architecture with an electron-trapping device is proposed. Performance evaluation of the proposed optoelectronic quotient-selected division shows that it is faster than the previously reported convergence division approach. Finally, proof-of-principle experimental results are presented to verify the effectiveness of the proposed technique. (C) 2001 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on the interferential theory, we deduce a new type of analytic expression suitable for describing the evolutions of the optical bottle beam generated from the axicon-lens optical system illuminated by the Gaussian beam for the first time. The theory does not use much approximation in the process of mathematical analysis and can better illustrate the optical bottle beam evolutions at any positions. With the derived expression, the three-dimensional (3D) longitudinal and transverse intensity profiles of the optical bottle beam are simulated numerically. The numerical calculations have been confirmed by the experimental results.
Resumo:
The femtosecond pump-probe technique was used to study the carrier dynamics of amorphous Ge2Sb2Te5 films. With carrier density at around 10(20)-10(21) cm(-3), carriers were excited within 1 ps and recovered to the initial state for less than 3 ns. On the picosecond time scale, the carrier relaxation consists of two components: a fast process within 5 ps and a slow process after 5 ps. The relaxation time of the fast component is a function of carrier density, which increases from 1.9 to 4.3 ps for the carrier density changing from 9.7x10(20) cm(-3) to 3.1x10(21) cm(-3). A possible interpretation of the relaxation processes is elucidated. In the first 5 ps the relaxation process is dominated by an intraband carrier relaxation and the carrier trapping. It is followed by a recombination process of trapped carriers at later delay time. (c) 2007 American Institute of Physics.
Resumo:
测试了不同掺杂浓度和样品厚度下掺铒磷酸盐和碲酸盐玻璃的吸收光谱、荧光光谱和荧光寿命,计算了Er^3+离子在1.53μm处的吸收截面(σa)、发射截面(σe)、自发辐射跃迁概率(Arad)、辐射跃迁寿命(τrad)、以及辐射跃迁量子效率(η)等光谱参数.讨论了荧光俘获效应对掺铒磷酸盐和碲酸盐玻璃光谱性质及光谱参数的影响.结果表明即使在铒离子低掺杂浓度(0.1mol%Er2O3)下,荧光俘获效应也普遍存在于掺铒玻璃材料中,使得荧光寿命(τt)和荧光半高宽(FWHM)随样品的厚度和铒离子掺杂浓度增加而增大,导致
Resumo:
本文采用电子自旋共振ESR方法,结合运用自旋捕捉技术(Spin Trapping-ESR)和时间分辨手段(TRESR),针对某些与生命能量代谢体系电子传递及其化学模拟反应的研究相关的几个重要问题(包括高等植物光系统II颗粒内超氧阴离子自由基(O2-)的产生机制、光合作用模型体系电子传递和跨膜电子传递反应动力学、传统中药有效成分提取物抗氧化分子机理与构效关系),从分子设计、实验方法、分子结构理论、反应机理与动力学分析等几个角度进行了较为系统的探索性研究,并获得以下几点新颖的研究成果: 1.光系统II颗粒内光抑制过程中O2-生成的分子机制 (1).首先,发展了新Spin Trapping-ESR技术,研制一系列性能优良的新型磷酰基取代的吡咯啉类活性氧自旋捕捉剂,并通过对比研究其捕捉性能,证明磷酰基取代的吡咯啉类捕捉剂比常用的DMPO捕捉剂的捕捉能力强、速度快,自由基加合物稳定性高,适合于光系统II体系中活性氧的研究。 (2).在PSII颗粒的光抑制过程中成功地检测到了O2-,并探讨了影响O2-产生的诸多因素。包括氧分子的浓度、1O2增强剂与淬灭剂、pH值效应、电子传递链阻断剂的影响。首次提出了O2-生成的分子机制:PSII颗粒中产生的O2-是光系统II中反应中心产生的1O2与次级电子受体QA形成的质子化半醌自由基反应的产物。此外,设计了一套化学模拟体系,进一步证明了02-的生成的分子机制。 2. 中国传统性中药的酚类提取物抗氧化剂的抗氧化分子机理与构效关系研究 用理论计算与实验结合的手段,研究了酚类抗氧化剂与02的反应。探讨了酚类抗氧化物的分子结构与其抗氧化活性的构效关系,为评价抗氧化剂的抗氧化能力提供了一定的依据。 3.有关光合作用模型体系电子传递和跨膜电子传递反应动力学的探索性基础研究 (1).对原有的电子自旋共振谱仪进行改造,自行设计并研制一套时间分辨ESR装置,时间分辨率达到准微秒级。 (2).利用时间分辨ESR装置,对C60及其环加成衍生物分子间和分子内光诱导电子转移反应的自由基复合过程动力学进行了研究,从分子结构角度分析了影响电荷分离态稳定性的因素。 (3).初步探讨了TPP/DODAC与HA/DODAC两种单层囊泡间的光诱导电子转移反应,获得了长寿命的电荷分离态,为光合作用模拟提供有价值的模型。 (4).通过对比研究mes-卟啉Ⅱ/苯醌/CH。OH的化学诱导动态核自旋态极化( CIDNP)和ESR波谱,提出一个激发态苯醌与质子给体间的光诱导氢转移自由基反应新机理。
Resumo:
Gonadotropin-releasing hormone (GnRH) is a conservative neurodecapeptide family, which plays a crucial role in regulating the gonad development and in controlling the final sexual maturation in vertebrate. Two differing cGnRH-II cDNAs of common carp, namely cGnRH-II cDNA1 and cDNA2, were firstly cloned from the brain by rapid amplification of cDNA end (RACE) and reverse transcription- polymerase chain reaction (RT-PCR). The length of cGnRH-II cDNA1 and cDNA2 was 622 and 578 base pairs (bp), respectively. The cGnRH-II precursors encoded by two cDNAs consisted of 86 amino acids, including a signal peptide, cGnRH-II decapeptide and a GnRH-associated peptide (GAP) linked by a Gly-Lys-Arg proteolytic site. The results of intron trapping and Southern blot showed that two differing cGnRH-II genes in common carp genome were further identified, and that two genes might exist as a single copy. The multi-gene coding of common carp cGnRH-II gene offered novel evidence for gene duplication hypothesis. Using semi-quantitative RT-PCR, expression and relative expression levels of cGnRH-II genes were detected in five dissected brain regions, pituitary and gonad of common carp. With the exception of no mRNA2 in ovary, two cGnRH-II genes could be expressed in all the detected tissues. However, expression levels showed an apparent difference in different brain regions, pituitary and gonad. According to the expression characterization of cGnRH-II genes in brain areas, it was presumed that cGnRH-II might mainly work as the neurotransmitter and neuromodulator and also operate in the regulation for the GnRH releasing. Then, the expression of cGnRH-II genes in pituitary and gonad suggested that cGnRH-II might act as the autocrine or paracrine regulator.
Resumo:
Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended.
Resumo:
Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The antibunching and blinking from a single CdSe/ZnS nanocrystal with an emission wavelength of 655 nm were investigated under different excitation powers. The decay process of the photoluminescence from nanocrystal was fitted into a stretched exponential, and the small lifetime and the small stretching exponent under a high excitation power were explained by using nonradiative multi-channel model. The probability of distributions for off-times from photoluminescence intermittence was fitted into the power law, and the power exponents were explained by using a tunneling model. For higher excitation power, the Auger-assisted tunneling model takes effect, where the tunneling rate increases and the observed lifetime decreases. For weak excitation power, the electron directly tunnels between the nanocrystal and trapping state without Auger assistance. The correlation between antibunching and blinking from the same nanocrystal was analyzed.
Resumo:
We have investigated spin polarization-related localized exciton photoluminescence (PL) dynamics in GaInNAs quantum wells by time-resolved PL spectroscopy. The emission energy dependence of PL polarization decay time as well as polarization-independent PL decay time suggests that the acoustic phonon scattering in the process of localized exciton transfer from the high-energy localized states to the low-energy ones dominates the PL polarization relaxation. By increasing the excitation power from 1 to 10 mW, the PL polarization decay time is changed from 0.17 to more than 1 ns, which indicates the significant effect of the trapping of localized electrons by nonradiative recombination centers. These experimental findings indicate that the spin-related PL polarization in diluted nitride semiconductors can be manipulated through carrier scattering and recombination process. (C) 2009 The Japan Society of Applied Physics
Resumo:
Undoped Ga-Sb samples were investigated by positron lifetime spectroscopy (PAS) and the coincident Doppler broadening (CDB) technique. PAS measurement indicated that there were monovacancy-type defects in undoped Ga-Sb samples, which were identified to be predominantly Ca vacancy (V-Ga) related defects by combining the CDB measurements. After annealing of these samples at 520 C, positron shallow trapping have been observed and should be due to Ga-Sb defects. Undoped Ga-Sb is intrinsically p-type having a residual carrier density of 10(16)-10(17) cm(-3). And the Ga-Sb antisite defects are stable in the (0), (1-) and (2-) charge states and act as a double acceptor. Thus, we infer that Ga-Sb antisite defects are the acceptor contributing to the p-type conduction for undoped samples. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Unusual dark current voltage (I-V) characteristics were observed in GaN Schottky diodes. I-V characteristics of the GaN Schottky diodes were measured down to the magnitude of 10(-14) A. Although these Schottky diodes were clearly rectifying, their I-V characteristics were non-ideal which can be judged from the non-linearity in the semi-logarithmic plots. Careful analysis of the forward bias I-V characteristics on log-log scale indicates space-charge-limited current (SCLC) conduction dominates the current transport in these GaN Schottky diodes. The concentration of the deep trapping centers was estimated to be higher than 10(15) cm(-3). In the deep level transient spectra (DLTS) measurements for the GaN Schottky diodes, deep defect levels around 0.20 eV below the bottom of the conduction band were identified, which may act as the trapping centers. The concentration of the deep centers obtained from the DLTS data is about 5 x 10(15) cm(-3). SCLC measurements may be used to probe the properties of deep levels in wide bandgap GaN-AlGaN compound semiconductors, as is the case with insulators in the presence of trapping centers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In order to clarify the major factors having confined the efficiencies of as-prepared crystalline silicon thin film (CSiTF) solar cells on the SSP (silicon sheets from powder) ribbons, QE (quantum efficiency) and Suns-V-oc study were performed on the epitaxial CSiTF solar cells fabricated on the SSP ribbons, the SSP ribbons after surface being zone melting recrystallized (ZMR) and single crystalline silicon (sc-Si) substrates. The results show that the epi-layers deposited on the SSP ribbons have rough surfaces, which not only increases the diffusion reflectance on the surfaces but also makes the anti-reflection coatings become structure-loosened, both of which would deteriorate the light trapping effect; in addition, the epi-layers deposited on the SSP ribbons possess poor crystallographic quality, so the heavy grain boundary (GB) recombination limits the diffusion length of the minority carriers in the epi-layers, which makes the as-prepared CSiTF solar cells suffer the worse spectra response at long-wavelength range. Nearly all the dark characteristic parameters of the CSiTF solar cells are far away from the ideal values. The performances of the CSiTF solar cells are especially affected by too high I-02 (the dark saturation current of space charge region) values and too low R-sh (parallel resistance) values. The higher 102 values are mainly caused by the heavy GB recombination resulting from the poor crystallographic qualities of the silicon active layers in the space charge regions, while the lower R-sh values are attributed to the electrical leakage at the un-passivated PN junction or solar cell edges after the solar cells are cut by the laser scriber.
Resumo:
Complex Fourier transformation (CFT) has been employed to analyse contactless electroreflectance (CER) spectra from an undoped-n(+) GaAs structure with various ac modulations and dc bias voltages. The CFT spectra of CER have been compared with those of photoreflectance (PR). It has been found that the CER non-flat modulation is between the built-in electric field and a larger electric field which increases with the modulation voltage. The result has been explained by the screening of the applied modulation electric field in one of the two half modulation cycles and the trapping of electrons in surface states in the other half modulation cycle. The dc bias does not change the CER spectra, hence their CFT spectra. This is because of the screening of the applied dc bias electric field.
Resumo:
In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.