62 resultados para Robotic Excavation
Resumo:
Dam is the key main works in the construction of water power. The success or failure of the construction of the dam mainly depends on the stability of the dam foundation. The double curvature arch dam-XiaoWan Dam is the highest one among the dams with the same type in the world, and the water thrust acted on it reaches ton, so the rock bearing capacity of dam foundation becomes more important. Because of the high and steep valley-side slope, the large scale of excavation and the complex body type of excavation, it is prominent that the problem of stress release of the rock mass in dam foundation. More great attentions should be paid for the stability and the degraded of rock properties of rock mass induced by the stress release. In this paper, the phenomena of stress release of rock mass in XiaoWan Dam foundation and its mechanisms were analyzed based on the collection of data, the detailed field engineering investigations, measurement of the rock mass and the 2D numerical calculations. The rock mass under the foundation is weak-weathered to intact, the quality of which is good. After excavation of the foundation, the rock mass near the slope surface occurred extend, stretch and stick-slip along original textures till the new fracture surface formed. Then platy structure of the rock mass takes on. The rock mass in the dam foundation occur resilience due to stress release towards free faces with the characteristics of time effect and localized deformation. In-situ measurements show that the rock mass near the surface are degraded. The stress release induced by excavation is a process of the interaction between engineering structures and geologic body. The stress release of rock mass in dam foundation is related to the changed degree of geometrical conditions. The rock near excavation surface failed nearly under uniaxial stresses. The bending-breaking mechanism of plate girder can interpret the failure model of the rock mass with platy structure in dam foundation slope. In essence, the stress release is the change of stress field including the change of directions and magnitudes of stress induced by excavation, which can induce the comedown of the safety margin. In this paper, the inducing conditions of stress release were calculated by numerical analyses. Moreover, from the point of view that the change of stress field, the coefficient of K, i.e. the variable load coefficient was proposed. Then the law of the change of it is interpreted. The distributional characteristics of fracture zone were expressed by the coefficient. The stress release of hard rock has the characteristic of localization. The measuring technique of sound wave can not reflect the small cracks in this kind of rock mass due to stress release. So, the spectral analysis method was proposed. At the same time, the application foreground in engineering of the Stockwell Time-Frequency- Spectrum method was discussed with a view to the limitation of it.
Resumo:
The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.
Resumo:
The two major issues in mining industry are work safety and protection of ground environment when carrying on underground mining activities. Cut-and-fill mining method is increasingly applied in China owing to its advantages of controlling ground pressure and protecting the ground environment effectively. However, some cut-and-fill mines such as Jinchuan nickel mine which has big ore body, broken rock mass and high geostress have unique characteristics on the law of ground pressure and rock mass movement that distinguish from other mining methods. There are still many problems unknown and it is necessary for the further analysis. In this dissertation, vast field survey, geology trenching and relative data analysis are carried out. The distribution of ground fissures and the correlation of the fissures with the location of underground ore body is presented. Using of monitoring data by three-dimension fissure meter and GPS in Jinchuan Deposit Ⅱ, the rule of the surface deformation and the reason of ground fissures generation are analyzed. It is shown that the stress redistribution in surrounding rocks resulting from mining, the existence of the void space underground and the influence of on-going mining activities are three main reasons for the occurrence of ground fissures. Based on actual section planes of No.1 ore body, a large-scale 3D model is established. By this model, the complete process of excavation and filling is simulated and the law of rock mass movement and stability caused by Cut-and-fill Mining is studied. According to simulation results, it is concluded that the deformation of ground surface is still going on developing; the region of subsidence on the ground surface is similar with a circle; the area on the hanging wall side is larger than one on the lower wall side; the contour plots show the centre of subsidence lay on the hanging wall side and the position is near the ore body boundary of 1150m and 1250m where ore body is the thickest. Along strike-line of Jinchuan Deposit Ⅱ, the deformation at the middle of filling body is larger than that in the two sides. Because of the irregular ore body, stress concentrates at the boundary of ore body. With the process of excavation and filling, the high stress release and the stress focus disappear on the hanging wall side. The cut-and-fill mechanism is studied based on monitoring data and numerical simulation. The functions of filling body are discussed. In this dissertation, it is concluded that the stress of filling body is just 2MPa, but the stress of surrounding rock mass is 20MPa. We study the surface movement influenced by the elastic modulus of backfill. The minimal value of the elastic modulus of backfill which can guarantee the safety production of cut-and-fill mine is obtained. Finally, based on the real survey results of the horizontal ore layer and numerical simulation, it is indicated that the horizontal ore layer has destroyed. Key words: cut-and-filling mining, 3D numerical simulation, field monitoring, rock mass movement, cut-and-filling mechanism, the elastic modulus of backfill, the horizontal ore layer
Resumo:
The Xiao-wan Power Station is the second highest arch dam in the world under construction. The height of the dam is about 292m. Large-scale excavation in the dam foundation of Xiao-wan Power Station has brought intensive unloading phenomenon. We collected a large number of firsthand data on unloaded rock mass in dam foundation, which supplies a natural testing ground for researching unloaded rock mass after excavation. Detailed study was carried out on the parameters of unloaded rock mass in the dam foundation of Xiao-wan Power Station. The study is not only importance for the Xiao-wan Power Station, but also has important instruction significance to similar projects in the Southwest of China. In order to study the mechanical parameters of unloaded rock mass, large field and laboratory tests were carried out. The test results showed the size effect of the sample is obvious. The change of deformation modulus of rock is not obvious. However, the Poisson's ratio of rock is increased under unloaded condition, its value is even more than 0.5. The theoretical forecasted results is accordance to the field tests including sound wave data and deformation monitoring data, which shows the forecasted results were reasonable. The soften yield criterion was adopted in the thesis to study the characteristics of the brittle rock mass in order to simulate their brittle failures. Based on the study results above, the transform of the structural plane network model to the numerical one was carried out, which made it feasible to consider the influence of large amount joints on the mechanical characteristic of rock mass in the numerical analyses. Using a factor, the degree of the damage or strengthen of rock mass can be determined rapidly, which proposed a rapid and feasible method for the determination of the parameters of rock mass.
Resumo:
As a kind of strategic resource,petroleum play an very important role in current social stability, economic development and state safety. Since 1993 China has turned from a net oil exporter into a net oil importer, the figure of imported oil increased from then on. In 2004 China's total energy consumption exceeded Japan’s, and ranked in the second place, just inferior to America. Today China is the world’s third-largest importing nation, accounting for 6% of world imports and 8% of world consumption. Comparing with other strategic petroleum reserve schemes, underground oil storage possess many advantages, such as security, economy, less pollution, save land, suited for strategic reserve and so on, so it is the most ideal form for strategic petroleum reserve. In the background of China Strategic Petroleum Reserve Program started just now, this paper choose Circum-Bo sea region as a study area, and do some system study on the underground oil storage caverns constructed in inter-large granite rock masses in Circum-Bo sea region. On the foundation of a great amount of information come from both home and abroad, firstly this paper analysed the principle, economy, cavern shape, profile dimension, and gain some cognizances and logos, as follows: ①Hard rock mass such as granite is the major rock, in which underground oil storage are constructed; ②Unlined underground oil storage caverns had been wide spread used as a sort of oil storage form abroad, there already exist a suit of skilled experience and technologies to prevent oil product from leaking; ③Compared with surface tanks, underground oil storage cavern possess predominance in economy clearly. In general, it will be more economical when the storage capacity exceed 50000m3. The quality of rock mass is the most important factor for underground storage cost, however such as hydrogeology, storage capacity, the number of storage galleries, the length, storage product, mechanical equipments, geographic location also influent the cost. In designed depth of the underground storage, the rock mass of Jinzhou mainly belong to class Ⅱ, but parts with dykes, clayization alteration, and dense joints are Ⅲ, Ⅳ; ④Now, there are few underground oil storages span more than 25m in both abroad and home. The examples of some ancient underground works and modern underground excavation with wide span surely give us many precious elicitations to construct more great unlined storage caverns, when the rock mass quality is good, cavern shape and construction method also are proper, it is quite possible to construct underground oil storage cavern with span more than 30m . The main axis orientation of Jinzhou underground oil storage cavern is NW direction, the cavern's elevation locate between -53msl and -76msl. The storage's total volume is about 3×106m3, composed of 8 parallel galleries with 950m length, the pillars between them are 45m, and every two of galleries form one unit, which can deposit 75×104m3 for each unit. The product will be stored are Saudi light and Saudi medium crude oil, the main cavern's section is 411.5m2, with 23m height and 19m width. According to the principle and technique of engineering geomechanics, this study supply a sort of system scientific thinking and method for sitting location of underground oil storage in granite region: ① On the foundation of the earth crust stability sub-zone appraise of Circum-Bo sea region, farther research concerning granite distribution, genesis, geological period and fault structure are conducted in stable areas, generally, this paper select Liaoxi, east shore of Liaotung peninsula and Jiaotung peninsula as target areas for underground oil storage regions, where Mesozoic granite is magnitude; ②After roundly comparison in facts of geologic structure, engineering geology, hydrogeology, topography, transportation and so on of three granite distributed areas, at last, selecting Jingzhou granite zone in Liaoxi out as an ideal construction area; ③ Detailed investigation is conducted in the southeast of Baimashi in Jingzhou development district, the final field. Ultrasonic Borehole Television, as a major way to collect original information of borehole rock mass were used, which is very effective to appraise the quality of deep rock mass; ④ According to the field data of tectonic stress, rock mass quality, the spatial distribution of fracture water, some optimum designs in cross section, axial direction and cavern span have been designed for the underground oil storage cavern layout in Jinzhou. To understand the characteristics of swelling alteration rock in Jinzhou granite mass, collected abundant swelling alteration rock engineering examples in granite, which study them in detail, concluded the swelling alteration rock distribute nearly everywhere in China, intruded medium-basic dykes alteration, along discontinuities and mineral hydrothermal alteration with genesis of granite are three main forms clayization alteration rock in granite rock mass. In Jinzhou field, from macro to micro studied the swelling rock which induced by mid-basic dyke intrusion, with weak swelling. In conclusion, this paper conclude the distribution rule and features of expansion alteration rock in filed, and advise some technical suggestions for excavation at swelling alteration rock part. The main features of this paper: ①In the process of site selection, investigation and design, a suit of technique and method of engineering geomechanics metasynthesis were formed, which is significative to guide the large scale underground oil storage cavern sitting location, investigation and design in granite rock mass; ②The detailed discussion on the engineering geology problems in granite mass, such as weathering crust, faults, dykes and clayization alteration rock, are useful for other projects in aspects of site selection, engineering geology evaluation and stability estimation; ③The summary and integration of the genesis, type, countermeasure relate to swelling alteration rock, also is likely to be used for other underground oil storage caverns constructed in swelling alteration granite. In conclusion, this study is meaningful for guiding the large scale underground oil storage for site selection, investigation and design in granite rock mass.
Resumo:
The Jinchuan Nickel Mine is the largest underground mine with cut-and-fill mining in China. It is very difficult to be exploited for very low safety stability of rock mass caused by complex geological conditions, developed faults, cracked rock mass and high stress. In this paper, the laws of rock mass movement、mechanics of shaft deformation and destroy were analyzed based on the collection of date, the detailed field engineering investigations, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring result of ground surface movement, there are different ground movement characteristics among the three Mine area of Jinchuan Nickel Mine. In No. 2 Mine area, the ground movement funnel with apparent asymmetry is developing, the influence scope is larger in the up faulted block than in the down faulted block, and the centre of ground movement is moving along the up faulted block direction with increasing depth of mining. Moreover, the tunnels in the corresponding area with the centre of ground movement are damaged seriously. In Longshou Mine area, the ground movement funnel is also developing, but the moving path and the nonlinear characters are more sophisticated because of the long-term effects of open excavating and the effects of underground mining together. In No. 3 Mine area, the underground mining impact on surface is not serious for the time of mining activity is not for long, but the ground movement funnel is also forming now. The underground mining has caused widespread land subsidence in Jinchuan Nickel Mine area, but the phenomena of surface raise appeared in some partial areas of Longshou Mine area and No. 3 Mine area. Analysis proved that the reason for the open pit bottom raise is the slope deformation activation caused by the excavation from open pit into underground mine; and that the raise of surface in No.3 Mine area is caused by the effect of elastic foundation due to underground mining. Although the GPS Monitoring results show the amount of subsidence is increasing constantly, the subsidence rate has a descending tendency with fluctuation in Jinchuan No. 2 Mine area. The subsidence rate curve is a time function and exists an extreme point, the rate increasing before extreme point and decreasing after the extreme point ,but the scale of decreasing rate will be very small after the rate decreasing up to a certain degree, moreover, the characteristics is different among different areas, which have some relation with the distance to the mining section and the dip of the ore body. ArcView is GIS software, which we adopted as a development platform, and made secondary development by its development language “avenue”, through which we developed a ground movement analysis and forecast System for Jinchuan Nickel Mine, which contain three modules : management of ground movement information; analysis and evaluation of ground movement; and ground movement forecast. In the module of evaluation, using the technique of MATLAB6.5 program with VB6.0, the system can achieve the ANN prediction model for GPS monitoring data, data preparation results analysis and model integrated was realized by Avenue programming. Finally, the author analyzed the mechanical of deformation and destroy of the No. 14 shaft, and its repair and artificial-support effectiveness also given detailed demonstration in various aspect. The result showed that the reason for the destroy of No. 14 shaft is underground mining, and being the case, the destroy of the shaft also has its special features, which mainly contains forked stress contour for mining steep ore and fault effect caused by mining activities. The repair and artificial-support played some restrictions on the rock mass movement and deformation, but did not show a strong or marked effect. With the increasing of mining depth and large-scale, the closure rock of the shaft will still deformed, even be destroyed.
Resumo:
The Xinli mine area of Sanshandao mine is adjacent to the Bohai Sea and its main exploitable ore deposit occurs in the undersea rock mass. The mine is the biggest undersea gold mine of China after production. The mine area faces a latent danger of water bursting, even sudden seawater inrush. There is no mature experience in undersea mining in China so far. The vein ore deposit is located in the lower wall of a fault; its possible groundwater sources mainly include bittern, Quaternary pore water and modern seawater. To ensure the safety of undersea mining, to survey the flooding conditions of the ore deposit using proper measures and study the potential seawater inrush pattern are the key technical problems. With the Xinli mine area as a case study, the engineering geological conditions of the Xinli mine area are surveyed in situ, the regional structural pattern and rock mass framework characteristics are found out, the distribution of the structural planes are modeled by a Monte Carlo method and the connectivity coefficients of rock mass structural planes are calculated. The regional hydro-geological conditions are analyzed and the in-situ hydro-geological investigation and sampling are performed in detail, the hydrochemistry and isotopes testing and groundwater dynamic monitoring are conducted, the recharge, runoff, discharge conditions are specified and the sources of flooding are distinguished. Some indices are selected from the testing results to calculate the proportion of each source in some water discharge points and in the whole water discharge of the Xinli mine area. The temporal and spatial variations of each water source of the whole ore deposit flooding are analyzed. According to the special project conditions in the Xinli mine area, the permeability coefficient tensors of the rock mass in Xinli mine area are calculated based on a fracture geometry measurement method, in terms of the connectivity and a few hydraulic testing results, a modified synthetic permeability coefficient are calculated. The hydro-geological conceptual and mathematical model are established,the water yield of mine is predicted using Visual Modflow code. The spreading law of surrounding rock mass deformation and secondary stress are studied by numerical analysis; the intrinsic mechanism of the faults slip caused by the excavation of ore deposit is analyzed. The results show that the development of surrounding rock mass deformation and secondary stress of vein ore deposit in the lower wall of a fault, is different from that in a thick-big ore deposit. The secondary stress caused by the excavation of vein ore deposit in the lower wall of a fault, is mainly distributed in the upper wall of the fault, one surface subsidence center will occur. The influences of fault on the rock mass movement, secondary stress and hydro-geological structures are analyzed; the secondary stress is blocked by the fault and the tensile stress concentration occurs in the rock mass near the fault, the original water blocking structure is destructed and the permeable structure is reconstructed, the primary structural planes begin to expand and newborn fissures occur, so the permeability of the original permeable structure is greatly enhanced, so the water bursting will probably occur. Based on this knowledge, the possible water inrush pattern and position of the Xinli mine area are predicted. Some computer programs are developed using object-oriented design method under the development platform Visual Studio.Net. These programs include a Monte Carlo simulation procedure, a joint diagrammatizing procedure, a structural planes connectivity coefficient calculating procedure, a permeability tensor calculating procedure, a water chemical formula edit and water source fixture conditions calculating procedure. A new computer mapping algorithm of joint iso-density diagram is raised. Based on the powerful spatial data management and icon functions of Geographic Information System, the pit water discharge dynamic monitoring data management information systems are established with ArcView.
Resumo:
It is a basic work to ascertain the parameters of rock mass for evaluation about stability of the engineering. Anisotropism、inhomogeneity and discontinuity characters of the rock mass arise from the existing of the structural plane. Subjected to water、weathering effect、off-loading, mechanical characters of the rock mass are greatly different from rock itself, Determining mechanical parameters of the rock mass becomes so difficult because of structure effect、dimension effect、rheological character, ‘Can’t give a proper parameter’ becomes one of big problems for theoretic analysis and numerical simulation. With the increment of project scale, appraising the project rock mass and ascertaining the parameters of rock mass becomes more and more important and strict. Consequently, researching the parameters of rock mass has important theoretical significance and actual meaning. The Jin-ping hydroelectric station is the first highest hyperbolic arch dam in the world under construction, the height of the dam is about 305m, it is the biggest hydroelectric station at lower reaches of Yalong river. The length of underground factory building is 204.52m, the total height of it is 68.83m, the maximum of span clearance is 28.90m. Large-scale excavation in the underground factory of Jin-ping hydroelectric station has brought many kinds of destructive phenomenon, such as relaxation、spilling, providing a precious chance for study of unloading parameter about rock mass. As we all know, Southwest is the most important hydroelectric power base in China, the construction of the hydroelectric station mostly concentrate at high mountain and gorge area, basically and importantly, we must be familiar with the physical and mechanical character of the rock mass to guarantee to exploit safely、efficiently、quickly, in other words, we must understand the strength and deformation character of the rock mass. Based on enough fieldwork of geological investigation, we study the parameter of unloading rock mass on condition that we obtain abundant information, which is not only important for the construction of Jin-ping hydroelectric station, but also for the construction of other big hydroelectric station similar with Jin-ping. This paper adopt geological analysis、test data analysis、experience analysis、theory research and Artificial Neural Networks (ANN) brainpower analysis to evaluate the mechanical parameter, the major production is as follows: (1)Through the excavation of upper 5-layer of the underground powerhouse and the statistical classification of the main joints fractures exposed, We believe that there are three sets of joints, the first group is lay fracture, the second group and the fourth group are steep fracture. These provide a strong foundation for the following calculation of and analysis; (2)According to the in-situ measurement about sound wave velocity、displacement and anchor stress, we analyses the effects of rock unloading effect,the results show a obvious time-related character and localization features of rock deformation. We determine the depth of excavation unloading of underground factory wall based on this. Determining the rock mass parameters according to the measurement about sound wave velocity with characters of low- disturbing、dynamic on the spot, the result can really reflect the original state, this chapter approximately the mechanical parameters about rock mass at each unloading area; (3)Based on Hoek-Brown experienced formula with geological strength index GSI and RMR method to evaluate the mechanical parameters of different degree weathering and unloading rock mass about underground factory, Both of evaluation result are more satisfied; (4)From the perspective of far-field stress, based on the stress field distribution ideas of two-crack at any load conditions proposed by Fazil Erdogan (1962),using the strain energy density factor criterion (S criterion) proposed by Xue changming(1972),we establish the corresponding relationship between far-field stress and crack tip stress field, derive the integrated intensity criterion formula under the conditions of pure tensile stress among two line coplanar intermittent jointed rock,and establish the corresponding intensity criterion for the exploratory attempt; (5)With artificial neural network, the paper focuses on the mechanical parameters of rock mass that we concerned about and the whole process of prediction of deformation parameters, discusses the prospect of applying in assessment about the parameters of rock mass,and rely on the catalog information of underground powerhouse of Jinping I Hydropower Station, identifying the rock mechanics parameters intellectually,discusses the sample selection, network design, values of basic parameters and error analysis comprehensively. There is a certain significance for us to set up a set of parameters evaluation system,which is in construction of large-scale hydropower among a group of marble mass.
Resumo:
According to the feature of high stress and large size underground tunnel , a method named DEFLAC is put forward in this paper. DEFLAC is such a method that use disturbing energy as criteria, and based on the simulating software of FLAC. Finally, the method is applied in the underground powerhouse project of Jin-Ping First-level Hydropower Station. The result is well. And some conclusions are got. (1) Based on the geological features of excavation unloading phenomena, they are concluded to three types, what’s more three corresponding mechanical modes are proposed to explain the unloading phenomena. (2) The relation of two standards , which is called GB50287-99 (T) and BQ ,is studied. And the main difference of them ,when they are applied in high stress zone ,is researched. (3) .A method named DEFLAC is put forward , which is combined disturbing energy method and FLAC simulating software. The two dimension and three dimension explicit finite difference expressions are deduced in this paper. (4) Compared the instability area achieved by FLAC and DEFLAC with the measured result, a conclusion is got. That is a more accurate result can be got by DEFLAC. (5) According to the main powerhouse first layer excavation project, the method to search and analyze the instability blocks is studied in this paper. Finally, the results got by FLAC and DEFLAC are compared .A conclusion is got that DEFLAC can judge the stability of blocks induced by intermittent joints, but Block Theory can’t. So more accurate block amount can be got by DEFLAC. It is an effective method to judge stability of blocks
Resumo:
Block theory is an effective method on stability analysis of fractured rigid rock mass. There are a lot of discontinuous planes developed in rock mass of Jinping II hydropower station conveyor tunnel, so the stability of conveyor tunnel is related with whether there are unstable blocks on excavation planes. This paper deals with the stability of conveyor tunnel with stereo-analytical method for block theory on the basis of detailed investigation of rock mass data, and makes judgements on the movable blocks sliding types which are induced by all rock discontinuous planes and every excavation plane of conveyor tunnel. A conclusion is obtained that the sliding type of blocks is mainly single sliding, and a relatively few sliding types of double-sided sliding and vertical block falling; Also, the obvious statistical distribution result on movable blocks in conveyor tunnel indicates that there are a bit more instability blocks in left wall, left and right arches than right wall. In this paper, the stochastic probability model is drawn into block theory to study the sliding probability of key block on the basis of detailed investigation of its rock mass data and the development of the discontinuous planes in rock mass of Jinping II hydropower station conveyor tunnel. And some following conclusions are obtained. The relationship between trace length and the probability of instability of key block is inverse ratio. The probability of 1-3m primary joints are relatively higher. Key block containing joints J2 is relatively stable and the reinforcement of the arch would be crucial in the conveyor tunnel. They are all useful to offer effective reinforcement design and have important engineering values.
Resumo:
Rock mass is widely recognized as a kind of geologic body which consists of rock blocks and discontinuities. The deformation and failure of rock mass is not only determined by rock block,but also by discontinuity which is virtually more important. Mutual cutting and combination of discontinuities controlled mechanical property of rock mass. The complex cutting of discontinuities determine the intense anisotropy on mechanical property of rock mass,especially under the effect of ground stress. Engineering practice has show that the brittle failure of hard rock always occurs when its working stress is far lower than the yield strength and compressive strength,the failure always directly related to the fracture propagation of discontinuities. Fracture propagation of discontinuities is the virtue of hard rock’s failure. We can research the rock mass discontinuous mechanical properties precisely by the methods of statistical analysis of discontinuities and Fracture Mechanics. According to Superposition Principle in Fracture Mechanics,A Problem or C Problem could be chosen to research. Problem A mainly calculates the crack-tip stress field and displacement field on internal discontinuities by numerical method. Problem C calculate the crack-tip stress field and displacement field under the assumption of that the mainly rock mass stress field has been known. So the Problem C avoid the complex mutual interference of stress fields of discontinuities,which is called crack system problem in Fracture Mechanics. To solve Problem C, field test on stress field in the rock mass is needed. The linear Superposition of discontinuities strain energies are Scientific and Rational. The difference of Fracture Mechanics between rock mass and other materials can mostly expression as:other materials Fracture Mechanics mostly face the problem A,and can’t avoid multi-crack puzzle, while the Rock mass Fracture Mechanics answer to the Problem C. Problem C can avoid multi-discontinuities mutual interference puzzle via the ground stress test. On the basis of Problem C, Fracture Mechanics could be used conveniently in rock mass. The rock mass statistics fracture constitutive relations, which introduced in this article, are based on the Problem C and the Discontinuity Strain Energy linear superposition. This constitutive relation has several merits: first, it is physical constitutive relation rather than empirical; second, it is very fit to describe the rock mass anisotropy properties; third, it elaborates the exogenous factors such as ground stress. The rock mass statistics fracture constitutive relation is the available approach to answer to the physical, anisotropic and ground stress impacted rock mass problems. This article stand on the foundation of predecessor’s statistics fractures constitutive relation, and improved the discontinuity distributive function. This article had derived the limitation of negative exponential distribution in the course of regression analysis, and advocated to using the two parameter negative exponential distribution for instead. In order to solve the problems of two-dimension stability on engineering key cross-sectional view in rock mass, this article derived the rock mass planar flexibility tensor, and established rock mass two-dimension penetrate statistics fracture constitutive relation on the basis of penetrate fracture mechanics. Based on the crack tip plasticity research production of penetrate fracture, for example the Irwin plasticity equifinality crack, this article established the way to deal with the discontinuity stress singularity and plastic yielding problem at discontinuity tip. The research on deformation parameters is always the high light region of rock mass mechanics field. After the dam foundation excavation of XiaoWan hydroelectric power station, dam foundation rock mass upgrowthed a great deal of unload cracks, rock mass mechanical property gotten intricacy and strong anisotropy. The dam foundation rock mass mostly upgrowthed three group discontinuities: the decantation discontinuity, the steep pitch discontinuity, and the schistosity plane. Most of the discontinuities have got partial unload looseness. In accordance with ground stress field data, the dam foundation stress field greatly non-uniform, which felled under the great impaction of tectonic stress field, self-weight stress field, excavation geometric boundary condition, and excavation, unload. The discontinuity complexity and stress field heterogeneity, created the rock mass mechanical property of dam foundation intricacy and levity. The research on the rock mass mechanics, if not take every respected influencing factor into consideration as best as we can, major errors likely to be created. This article calculated the rock mass elastic modulus that after Xiao Wan hydroelectric power station dam foundation gutter excavation finished. The calculation region covered possession monolith of Xiao Wan concrete double-curvature arch dam. Different monolith were adopted the penetrate fracture statistics constitutive relation or bury fracture statistics constitutive relation selectively. Statistics fracture constitutive relation is fit for the intensity anisotropy and heterogeneity rock mass of Xiao Wan hydroelectric power station dam foundation. This article had contrastive analysis the statistics fracture constitutive relation result with the inclined plane load test actual measurement elastic modulus and RMR method estimated elastic modulus, and find that the three methods elastic modulus have got greatly comparability. So, the statistics fracture constitutive relations are qualified for trust. Generally speaking,this article had finished following works based on predecessors job: “Argumentation the C Problems of superposition principle in Fracture Mechanics, establish two-dimension penetrate statistics fracture constitutive relation of rock mass, argue the negative exponential distribution limitation and improve it, improve of the three-dimension berry statistics fracture constitutive relation of rock mass, discontinuity-tip plastic zone isoeffect calculation, calculate the rock mass elastic modulus on two-dimension cross-sectional view”. The whole research clue of this article inherited from the “statistics rock mass mechanics” of Wu Faquan(1992).
Resumo:
Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.
Resumo:
The engineering geological properties of Neogene hard clays and related engineering problems are frontiers in the fields of Engineering Geology, Soil Mechanics and Rock Mechanics. Recently, it has been recognized that Neogene hard clay is the intermediate type of material between the soil and the rock. Many aspects of them, such as sampling, testing, calculating and engineering process, are special, which could not be researched by means of theories and methods of traditional Soil Mechanics of Rock Mechanics. In order to get real knowledge and instruct the engineering practice, intersect studying of multiple disciplines, including Engineering Geology, Soil Mechanics and Rock Mechanics, etc., is necessary. Neogene hard clay is one of the important study objects of regional problem rocks & soils in our country, which extensively distributed in China, especially in Eastern China. Taking the related areas along the middle line of the Project of Transferring Water from the South to the North (e.g. Nanyang basin, Fangcheng-Baofeng area and Handan-Yongnian area), South-west of Shandong, Xu-Huai area and Beijing area, etc. as main study areas, the paper divided Neogene hard clays into reduction environment dominated origin and oxidation environment dominated origin, which distributed on areas western and eastern to Mount Taihangshan respectively. Intermediate types are also existed in some areas, which mainly distribute near the edges of depositional basins; they are usually of transitions between diluvial and lacustrine deposits. As to Neogene hard clays from Eastern China, the clay particle content is high, and montmorillonite or illite/montmorillonite turbostratic mineral is the dominating clay mineral. The content of effective montmorillonite is very high in each area, which is the basis for the undesirable engineering properties of Neogene hard clays. For hard clays from the same area, the content of effective montmorillonite in gray-greenish hard clay is much higher than that in purple-brownish or brown-yellowish hard clay, which is the reason why the gray-greenish hard clay usually has outstanding expansive property. On the other hand, purple-brownish or brown-yellowish hard clay has relatively less montmorillonite, so its property is better. All of these prove that the composition (clay mineral) of Neogene hard clay is the control factor for the engineering properties. Neogene hard clays have obvious properties such as fissured, overconsolidated and expansive, which are the main reasons that many engineering problems and geological harzards usually occur in Neogene hard clays. The paper systematically elaborates the engineering properties of Neogene hard clays from Eastern China, analyses the relationships between engineering properties and basic indexes. The author introduces the ANN method into the prediction of engineering property indexes of hard clays, which provides a new way for quantitatively assessment and prediction of engineering property indexes. During investigation in the field, the author found that there exists obvious seam-sheared zone between different hard clays in Miocene Xiacaowan formation in Xu-Huai area. Similar phenomenon also exists near the borderline between Neogene hard clays and underlying coal measures in the Southwest of Shandong province, which could be observed in the cores. The discovery of seam-sheard zone has important theoretical and practical significance for engineering stability analysis and revealing the origin of fissures in Neogene hard clays. The macrostructure, medium structure and microstructure together control the engineering properties of hard clays. The author analyses and summarizes the structural effects on hard clays in detail. The complex of the strength property of hard clays is mostly related to the characteristics of fissures, which is one of the main factors that affect the choice of shear strength parameters. So structure-control theory must be inseparably combined with composition-control theory during the engineering geological and rock/soil mechanics research of hard clays. The engineering properties, such as fissured, overconsolidated and expansive, control the instability of engineering behaviors of Neogene hard clays under the condition of excavation, i.e. very sensitive to the change of existence environment. Based on test data analysis, the author elaborates the effects of engineering environment change on the engineering properties. Taking Nanyang basin as example, the author utilizes FEM to study the effects of various factors on stability of cutting canal slopes, than sets forth the characteristics, development laws and formation mechanism of the deformation and failure of hard clay canal slopes, summarizes the protection and reinforcement principles, as well as the protection and remedy steps. On the basis of comparison of engineering properties of domestic and foreign Neogene muddy deposits, in the view of whole globe and associated with the geological characteristics of China, the paper demonstrates that the intermediate type of the material between the soil and the rock, named "hard clay/soft rock", which can not be separated abruptly, really exists in China. The author has given a preliminary classification based on its geological origin and distribution law, which is very significant for promoting the mixture of Engineering Geology, Soil Mechanics and Rock Mechanics. In the course of large scales engineering construction in China, many engineering experiences and testing data are gained, summarizing these testing results and automatically managing them with computer technology are very necessary. The author develops a software named "Hard Clay-Soft Rock Engineering Geological Information Management and Analysis System (HRGIMS)", realizes the automatic and visual management of geo-engineering information, on the basis of information management, the functions of test data analysis and engineering property prediction are strengthened. This system has well merits for practice and popularization.
Resumo:
Soil nailing is a sort of new support system developed in recent year, and it has already been extensive application in the supporting system of deep-foundation pit . Based on the in situ measured data of hairun mansion deep-foundation pit excavation in Beijing, which include steel bar stress and lateral deformation, the following categories are systematically studied: (1) Magnitude of lateral deformation and displacement distribution vary with time at different excavation depth of deep-foundation pit excavation. Magnitude and distribution of soil nailing force vary with time at different excavation depth of deep-foundation pit excavation. By contract with the in situ measured data, we process the three-dimension numerical simulation of deep-foundation pit excavation with soil nailing support by Fast Lagrangian Analysis of Continua 3D(FLAC~(3D)). By above in situ measurement and studying, we found that the mechanism of soil nailing support is: by stress sharing, stress transmission and diffusion, and displacement restriction, composite soil nailing system can improve the strength and rigidity of soil and decrease the deformation and failure state by enhancing the whole stability of slope.
Resumo:
Cut-and-filling stoping becomes more and more important in mining industry for the advantage in protecting environment and its adaptability. However, there is less research in the movement of rock mass and the ground displacement caused by the mining method. In this paper, based on relevant geological and geotechnical test data, the strata movement and the ground displacement of Jinchuan nickel mine are studied comprehensively. The main achievement in this paper can be drawn as follows. Geologic conditions of mining area No.2 of Jinchuan Nickel mine are summed up and influential factors of the movement of rock mass and the surface displacement are analyzed. For recognized the shape of orebody No.l, three-dimensional model is established with 3D Studio MAX software. Based on reconnaissance trip, the monitoring data of GPS and ground fissures in mining area No.2 of Jinchuan Nickel mine are discussed. Then, the rule of the surface displacement and the reason of ground fissures generation are preliminary analyzed. The characteristic of ground movement, surrounding stress and strain in the process of excavation and backfilled is research and analyzed with the method of numerical simulation. The rule of the movement of rock mass and the surface displacement in mining area No.2 of Jinchuan Nickel mine is summed up. The influence of the movement of rock mass and the surface displacement by the dip angle of orebody No.l in mining area No.2 is examined and then the strata movement and the ground displacement is predicted.