小湾电站坝基岩体卸荷工程地质力学研究
Contribuinte(s) |
王思敬 |
---|---|
Data(s) |
30/09/2006
|
Resumo |
Dam is the key main works in the construction of water power. The success or failure of the construction of the dam mainly depends on the stability of the dam foundation. The double curvature arch dam-XiaoWan Dam is the highest one among the dams with the same type in the world, and the water thrust acted on it reaches ton, so the rock bearing capacity of dam foundation becomes more important. Because of the high and steep valley-side slope, the large scale of excavation and the complex body type of excavation, it is prominent that the problem of stress release of the rock mass in dam foundation. More great attentions should be paid for the stability and the degraded of rock properties of rock mass induced by the stress release. In this paper, the phenomena of stress release of rock mass in XiaoWan Dam foundation and its mechanisms were analyzed based on the collection of data, the detailed field engineering investigations, measurement of the rock mass and the 2D numerical calculations. The rock mass under the foundation is weak-weathered to intact, the quality of which is good. After excavation of the foundation, the rock mass near the slope surface occurred extend, stretch and stick-slip along original textures till the new fracture surface formed. Then platy structure of the rock mass takes on. The rock mass in the dam foundation occur resilience due to stress release towards free faces with the characteristics of time effect and localized deformation. In-situ measurements show that the rock mass near the surface are degraded. The stress release induced by excavation is a process of the interaction between engineering structures and geologic body. The stress release of rock mass in dam foundation is related to the changed degree of geometrical conditions. The rock near excavation surface failed nearly under uniaxial stresses. The bending-breaking mechanism of plate girder can interpret the failure model of the rock mass with platy structure in dam foundation slope. In essence, the stress release is the change of stress field including the change of directions and magnitudes of stress induced by excavation, which can induce the comedown of the safety margin. In this paper, the inducing conditions of stress release were calculated by numerical analyses. Moreover, from the point of view that the change of stress field, the coefficient of K, i.e. the variable load coefficient was proposed. Then the law of the change of it is interpreted. The distributional characteristics of fracture zone were expressed by the coefficient. The stress release of hard rock has the characteristic of localization. The measuring technique of sound wave can not reflect the small cracks in this kind of rock mass due to stress release. So, the spectral analysis method was proposed. At the same time, the application foreground in engineering of the Stockwell Time-Frequency- Spectrum method was discussed with a view to the limitation of it. |
Identificador | |
Idioma(s) |
中文 |
Fonte |
小湾电站坝基岩体卸荷工程地质力学研究.刘彤[d].中国科学院地质与地球物理研究所,2006.20-25 |
Palavras-Chave | #小湾电站 #坝基 #卸荷 #应力场 #数值分析 #声波测试 #波谱分析 |
Tipo |
学位论文 |