107 resultados para POSTURAL ASYMMETRY
Resumo:
The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k center dot p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319. (c) 2007 American Institute of Physics.
Resumo:
We present a generation condition for realizing high-Q TM whispering-gallery modes (WGMs) in semiconductor microcylinders. For microcylinders with symmetry or weak asymmetry vertical waveguiding, we show that TM WGMs can have a high Q factor, with the magnitude of 10(4) at the radius of the microcylinder of 1 mu m, by three-dimensional numerical simulation. The Q factor of TE WGMs is much less than that of TM WGMs in the semiconductor microcylinders due to a vertical radiation loss caused by mode coupling with the vertical propagating mode. The results open up a possible application of TM WGMs in semiconductor microcylinders for efficient current injection microlasers and single photon sources.
Resumo:
The spectrum of differential tunneling conductance in Si-doped GaAs/AlAs superlattice is measured at low electric fields. The conductance spectra feature a zero-bias peak and a low-bias dip at low temperatures. By taking into account the quantum interference between tunneling paths via superlattice miniband and via Coulomb blockade levels of impurities, we theoretically show that such a peak-dip structure is attributed to a Fano resonance where the peak always appears at the zero bias and the line shape is essentially described by a new function \xi\/\xi\+1 with the asymmetry parameter q approximate to 0. As the temperature increases, the peak-dip structure fades out due to thermal fluctuations. Good agreement between experiment and theory enables us to distinguish the zero-bias resonance from the usual Kondo resonance.
Resumo:
It is well known that asymmetry in the (001) direction can induce in-plane optical anisotropy (IPOA) in (001) quantum wells (QWs). In this letter, asymmetry is introduced in (001) GaAs/AlGaAs QWs by inserting 1 ML (monolayer) of InAs or AlAs at interfaces. Strong IPOA, which is comparable to that in the InGaAs/InP QWs with no common atom, is observed in the asymmetric GaAs/AlGaAs QW by reflectance difference spectroscopy. (C) 2006 American Institute of Physics.
Resumo:
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.
Resumo:
Rashba spin splitting (RSS) in biased semiconductor quantum wells is investigated theoretically based on eight-band k center dot p theory. We find that at large wave vectors, RSS is both nonmonotonic and anisotropic as a function of in-plane wave vector, in contrast to the widely used isotropic linear model. We derive an analytical expression for RSS, which can qualitatively reproduce such nonmonotonic behavior at large wave vectors. We also investigate numerically the dependence of RSS on the various band parameters and find that RSS increases with decreasing band gap and subband index, increasing valence band offset, external electric field, and well width. All these dependences can be qualitatively described by our analytical model.
Resumo:
The in-plane optical anisotropies of a series of GaAs/AlxGa1-xAs single-quantum-well structures have been observed at room temperature by reflectance difference spectroscopy. The measured degree of polarization of the excitonic transitions is inversely proportional to the well width. Numerical calculations based on the envelope function approximation incorporating the effect of C-2v-interface symmetry have been performed to analyze the origin of the optical anisotropy. Good agreement with the experimental data is obtained when the optical anisotropy is attributed to anisotropic-interface structures. The fitted interface potential parameters are consistent with predicted values.
Resumo:
Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.
Resumo:
The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Two sensitive polarized spectroscopies, reflectance difference spectroscopy and photocurrent difference spectroscopy, are used to study the characteristic of the in-plane optical anisotropy in the symmetric and the asymmetric (001) GaAs/Al(Ga)As superlattices (SLs). The anisotropy spectra of the symmetric and the asymmetric SLs show significant difference: for symmetric ones, the anisotropies of the 1HH-->1E transition (1H1E) and 1L1E are dominant, and they are always approximately equal and opposite; while for asymmetric ones, the anisotropy of 1H1E is much less than that of 1L1E and 2H1E, and the anisotropy of 3H2E is very strong. The calculated anisotropy spectra within the envelope function model agree with the experimental results, and a perturbation approach is used to understand the role of the electric field and the interface potential in the anisotropy. (C) 2001 American Institute of Physics.
Resumo:
A trilayer asymmetric superlattice, Si/Si1-xGex/Si1-yGey, is proposed, in which the broken inversion symmetry makes the microstructure optically biaxial; in particular, inequivalent interfaces in this heterostructure may cause a polarization ratio as large as about 2.5% in the absence of an external field. The electronic structure and absorption spectra for two types of trilayer superlattice with different parameters are calculated by use of the tight-binding model; the findings indicate the importance of the carrier confinement for the anisotropy value. The effect of external electric field on the optical anisotropy for such structures has also been discussed, and a Pockels coefficient of 10-9 cm V-1 estimated.
Resumo:
The influence of electric fields on surface migration of Gallium (Ga) and Nitrogen (N) adatoms is studied during GaN growth by molecular beam epitaxy (MBE). When a direct current (DC) is used to heat the sample, long distance migration of Ga adatoms and diffusion asymmetry of N adatoms at steps are observed. On the other hand, if an alternating current (AC) is used, no such preferential adatom migration is found. This effect is attributed to the effective positive charges of surface adatoms. representing an effect of electro-migration. The implications of such current-induced surface migration to GaN epitaxy are subsequently investigated. It is seen to firstly change the distribution of Ga adatoms on a growing surface, and thus make the growth to be Ga-limited at one side of the sample but N-limited at the other side. This leads to different optical qualities of the film and different morphologies of the surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Numerical calculations within the envelope function framework have been performed to analyze the relations between the magnitude of in-plane optical anisotropy and the values of the additional hole-mixing coefficients due to interface and electric field in (001) symmetric GaAs/AlxGa1-xAs superlattices for light propagating along the [001] direction. It is found that the heavy- and light-hole states are mixed independently by interface and electric field. The numeric results demonstrate that the line shape of the in-plane anisotropic spectrum is determined by the ratio of the two hole-mixing coefficients. Theoretical analysis shows that with the help of simple calculation of the anisotropy at k=0, reliable values of the hole-mixing coefficients can be determined by reflectance-difference spectroscopy (IDS) technique, demanding no tedious fitting of experimental curves. The in-plane optical anisotropy measured by RDS provides a new method of getting the information on buried interfaces through the Value of the hole-mixing coefficient due to interface.
Resumo:
Optical spectra of CdSe nanocrystals are measured at room temperature under pressure ranging from 0 to 5.2 GPa. The exciton energies shift linearly with pressure below 5.2 GPa. The pressure coefficient is 27 meV GPa(-1) for small CdSe nanocrystals with the radius of 2.4 nm. With the approximation of a rigid-atomic pseudopotential, the pressure coefficients of the energy band are calculated. By using the hole effective-mass Hamiltonian for the semiconductors with wurtzite structure under various pressures, we study the exciton states and optical spectra for CdSe nanocrystals under hydrostatic pressure in detail. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbit coupling on the hole states are investigated. The Coulomb interaction of the exciton states is also taken into account. It is found that the theoretical results are in good agreement with the experimental values.
Resumo:
By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.