69 resultados para PES
Resumo:
The effect of physical aging at 210 degrees C on the mechanical properties of phenolphthalein polyether sulfone (PES-C) and a PES-C/poly(phenylene sulfide) (PPS) blend, with 5% content of PPS, were studied using DMA, tensile experiments, an instrumented impact tester, and SEM observations. The blend shows good mechanical properties in comparison with the corresponding PES-C. The mechanical properties of both materials exhibit characteristics of physical aging, with only the aging rate of the blend relatively slower, which should be attributed to the constraint effect of PPS particles and the good interfacial adhesion. The morphology of the PPS phase in the blend did not change with aging time. The principal role of PPS particles is to induce crazes, which dissipate energy, under applied loading; thus, the blend shows good toughness. On the other hand, the multiple crazing mechanism depends on the molecular mobility or structural state of the matrix. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Block copolymers of poly(ethersulphone) (PES) oligomers with liquid crystalline polyester units were synthesized by the reaction of dihydroxy-terminated poly(ether sulphone) oligomers (number-average molecular weights: 704, 1,158 and 2570) and terephthaloyl bis(4-oxybenzoyl chloride), and their properties were investigated. The results indicated that the copolymer with PES segments of molecular weight of 704 possessed birefringent features when annealed at 360 degrees C, while the copolymer with PES segments of molecular weight of 2,570 became isotropic. Also, the block copolymers had a better chemical resistance and high-temperature stability than PES.
Resumo:
Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.
Resumo:
Local main chain dynamics of dissolved phenolphthalein polyethersulfone (PES-C) in solution with chloroform-d(1) were examined through C-13 NMR relaxation measurements. Spin-lattice relaxation times and NOE (nuclear Overhauser effects) factors were measured as a function of temperature. The relaxation data were interpreted in terms of main chain segmental motion by using the damped orientational diffusion model (DAMP) and the conformation jump model (VJGM) derived by Valeur, Jarry, Geny, and Monnerie. The simulation method used is N-SIMPLEX, which gives, in this study, a result of the object function less than 10(-4). Correlation times were obtained for the main chain motion of PES-C with these models and the results indicate that the main chain of PES-C are flexible. The comparison between PES-C and 1,2-polybutadiene is proposed. The distribution of the correlation time for the main chain motion by using VJGM model is discussed. The temperature dependence of correlation times for PES-C indicating the dynamical rigidity of its chains is obtained.
THERMAL AND MECHANICAL-PROPERTIES OF PHENOLPHTHALEIN POLYETHERSULFONE POLY(PHENYLENE SULFIDE) BLENDS
Resumo:
The thermal and mechanical properties of phenolphthalein polyethersulfone/poly(phenylene sulfide) (PES-C/PPS) blends were studied using a differential scanning calorimeter, a dynamic mechanical analyzer, and mechanical characterization. The morphologies of fracture surfaces were observed by scanning electron microscopy. The blends are multiphase systems with strong interaction between the two phases. It is of interest that, although the strength and ductility of PPS are lower than those of PES-C, the addition of PPS can improve markedly the impact strength of PES-C without changing its higher strength. The PPS can also act as a flow aid for PES-C. (C) 1995 John Wiley and Sons, Inc.
Resumo:
通过熔融共混,制备不同配比(2.5/97.5~75/25)的PEI/PES—C共混物,使用WAXD、DSC、锥板流变仪、力学性能测试、SEM等方法对共混物进行了研究。共混后强度、模量均有提高,在高剪切速率下,共混物的粘度有所降低。扫描电镜照片显示,共混物具有“皮芯”结构。
Resumo:
Blends of a new phenolphthalein poly (ether sulfone) (PES-C) and a thermotropic liquid crystalline polymer (LCP) were prepared by melt-blending in a twin-screw extruder. Rheological properties, fracture toughness, K(IC), and morphology of the blends were
Resumo:
An experimental study of the phase morphology and miscibility of binary blends of poly-arylethersulfone (PES) and a liquid crystalline polymer (LCP) of p-oxybenzoate and ethylene terephthalate units in a 60/40 molar ratio (PET-60PHB) is described. Blends
Resumo:
Phenolphthalein poly(ether ether sulphone) (PES-C) was found to be miscible with uncured bisphenol-A-type epoxy resin, i.e. diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature within the whole composition range. Miscibility between PES-C and DGEBA is considered to be due mainly to the entropy contribution. However, dynamic mechanical analysis (d.m.a.) and scanning electron microscopy (SEM) studies revealed that PES-C exhibits different miscibility with four cured epoxy resins (ER). The overall compatibility and the resulting morphology of the cured blends are dependent on the choice of cure agent. For the blends cured with amines (4,4'-diaminodiphenylmethane (DDM) and 4,4'-diaminodiphenylsulphone (DDS)), no phase separation occurs as indicated by either d.m.a. or SEM. However, for the blends cured with anhydrides (maleic anhydride (MA) and phthalic anhydride (PA)), both d.m.a. and SEM clearly show evidence of phase separation. SEM study shows that the two phases interact well in the MA-cured blend while the interface between the phases in the PA-cured blend is poorly bonded. The differences in the overall compatibility and the resulting morphology between the amine-cured and anhydride-cured systems have been discussed from the points of view of both thermodynamics and kinetics.
Resumo:
酚酞聚醚醚砜(PES-c)同未交联的双酚A二缩水甘油醚(DGEBA)环氧树脂的共混物呈单一的玻璃化转变温度,其相容性主要归因于混合熵的贡献。PES-C同交联的环氧树脂之间的相容性与所用的固化剂有关。以胺类作DGEBA的固化剂时,共混物不发生相分离;以酸酐作固化剂时,共混物发生相分离。
Resumo:
本文报道注射级酞侧基聚芳醚砜(PES-C)和聚芳醚酮(PEK-C)共混试样的玻璃化转变行为和部分力学性能的研究结果。并讨论共混工艺对相容性的影响。 PES-C和PEK-C树脂均由中国科学院长春应用化学研究所徐州工程塑料厂合成,在三氯甲烷中的比浓粘度ηsp/c(20℃)分别为0.45和0.47。将粉状树脂在GH-100Q高速搅拌器内按配方混合,并在烘箱内干燥后,用SHJ-30双螺杆挤出机在320~350℃(物料温度)挤出造粒。
Resumo:
利用具有非线性光学活性的对硝基苯胺掺杂高玻璃化转变温度的聚芳醚砜(PES-C)和聚芳醚酮(PEK-C),得到了两种掺杂含量较高的掺杂型非线性光学聚合物体系。电晕极化表明较高的取向和较慢的松驰。
Resumo:
Blends of poly(hydroxyether of phenolphthalein) (PHP) with poly(ether sulphone) (PES) were prepared by casting from a common solvent; they were found to be miscible and show a single, composition-dependent glass transition temperature. All the PHP/PES blends exhibited lower critical solution temperature behaviour, i.e. phase separation occurred at elevated temperatures. A F.T.-i.r. study revealed that a hydrogen-bonding interaction occurs between these polymers but it is weaker than in pure PHP. The observed miscibility is hence proposed to be the result of specific interactions between the polymers.
Resumo:
Blends of poly(ether sulphone) (PES) with a poly(ether imide) (PEI) in various proportions were prepared by the coprecipitation method. Mechanical properties and morphology of the blends were studied using tensile tests and scanning electron microscopy (SEM). The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for ultimate strength. These results suggest that the PEI/PES blends are mechanically compatible. SEM study revealed that the blends are not homogeneous and the polymers are immiscible on the segmental level. However, the dispersions of the blends are rather fine. The interfaces between the two phases are excellently bonded; PEI and PES appear to interact well.
Resumo:
The effects of irradiation on some members of the family of aromatic polymers with a cardo group, such as polyetherketone with a cardo group (PEK-C) and polyethersulfone with a cardo group (PES-C), were studied. It was found that PEK-C and PES-C can be crosslinked by irradiation under vacuum. Moreover, it was also found that the intensity of the shake-up peak of x-ray photoelectron spectroscopy (XPS) for PEK-C and PES-C varies with irradiation dose. Gelation doses (Rg) of PEK-C and PES-C were estimated from the XPS shake-up peak.