85 resultados para Modelação com base em atividades
Resumo:
In this work we present a permeable base transistor consisting of a 60 nm thick N,N'diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine layer or a 40 nm thick 2,6-diphenyl-indenofluorene layer as the emitter, a CalAl/Ca multilayer as the metal base, and p-Si as collector. In the base, the Ca layers are 5 nm thick and the Al layer was varied between 10 and 40 nm. the best results obtained with a 20 nm thick layer. The devices present common-base current gain with both organic layer and silicon acting as emitter, but there is only observable common-emitter current gain when the organic semiconductor acts as emitter. The obtained common-emitter current gain, similar to 2, is independent on collector-emitter voltage, base current and organic emitter in a reasonable wide interval. Air exposure or annealing of the base is necessary to achieve these characteristics, indicating that an oxide layer is beneficial to proper device operation.
Resumo:
Vanadium(III) complexes bearing tridentate salicylaldiminato ligands (2a-f) [OC6H4CH=NL]VCl2(THF) (L = CH2CH2OMe, 2a; CH2CH2NMe2, 2b; CH2C5H4N, 2c; 8-C9H6N (quinoline), 2d; 2-MeSC6H4, 2e; 2-Ph2PC6H4, 2f) and tridentate beta-enaminoketonato ligands [OC6H8CH=N-2-Ph2PC6H4]VCl2(THF) (2g) and [O(Ph)C=CHCH=N-2-Ph2PC6H4]VCl2(THF) (2h) were prepared from VCl3(THF)(3) by treating with 1.0 equiv of the deprotonated ligands in tetrahydrofuran (THF). These complexes were characterized by FTIR and mass spectrometry as well as elemental analysis. Structures of complexes 2e, 2f, and 2h were further confirmed by X-ray crystallographic analysis. These complexes were investigated as catalysts for olefin polymerization in the presence of organoaluminum compounds. On activation with Et2AlCl, complexes 2a-h exhibited high catalytic activities toward ethylene polymerization (up to 20.64 kg PE/mmol(v) center dot h center dot bar) even at high temperature, suggesting these catalysts possess high thermal stability.
Resumo:
A new kind of luminescent organic-inorganic hydrid material consisting of Eu(III)-schiff base complex covalently bonded to silica xerogel was synthesized via the sol-gel method using a Eu (N-propylene salicylimine ligand) complex modified with pendant triethoxysilane groups (Eu(III)(salenHSi)). The Eu(III)(salenHSi) complex is characterized by Fourier transform infrared (FT-IR) spectroscopy. Luminescent properties of the complex and the resulted hybrid silica xerogels have been investigated at room temperature.
Resumo:
A series of aluminum ethyls and isopropoxides based upon N,N,O,O-tetradentate Schiff base ligand framework have been prepared. X-ray diffraction analysis and H-1 NMR confirmed that these Schiff base aluminum ethyls and isopropoxides were all monomeric species with a five-coordinated central aluminum in their solid structures. Compared to the aluminum ethyls which all retain their monomeric structure in the solution, the dinucleating phenomenons of aluminum isopropoxides with less steric hindered substituents in the solution have also been observed. The activities and stereoselectivities of these complexes toward the ring-opening polymerization of rac-lactide have been investigated. Polymerization experiments indicated that (SB-2d)(AlOPr)-Pr-i [(SB-2d) = 2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)] exhibited the highest stereoselectivity and (SB-3b)(AlOPr)-Pr-i [(SB-3b) = 2,2-dimethyl-1,3-propylenebis(3,5-dichlorinesalicylideneiminato)] possessed the highest activity among these aluminum isopropoxides. The substituents and the mode of the bridging part between the two nitrogen atoms both exerted significant influences upon the progress of the polymerizations, influencing either the tacticity of isolated polymers or the rate of polymerization.
Resumo:
A series of NNOO-tetradentate enolic Schiff-base ligands were prepared where ligand L-1 = bis(benzoylacetone)propane-1,2-diimine, L-2 = bis(acetylacetone)-propane-1,2-diimine, L-3 = bis-(acetylacetone)cyclohexane-1,2-diimine. Their further reaction with aluminum tris(ethyl) formed complexes LAlEt (1a, 2a and 3a). The solid structure of complexes la, 2a and 3a confirmed by X-ray single crystal analysis manifested that these complexes were all monomeric and five-coordinated with an aluminum atom in the center. The configurations of these complexes varied from trigonal bipyramidal geometry (tbp) to square pyramidal geometry (sqp) due to their different auxiliary ligand architectures. H-1 NMR spectra indicated that all these complexes retained their configuration in solution states. Their catalytic properties to polymerize racemic-lacticle (rac-LA) in the presence of 2-propanol were also studied. The diimine bridging parts as well as the diketone segment substituents had very close relationship with their performance upon the polymerization process. All these complexes gave moderately isotactic polylactides with controlled molecular weight and very narrow molecular weight distributions.
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.
Resumo:
A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.
Resumo:
A series of neutral nickel complexes [Ni(Ph)(PPh3)(N, O)] with Schiff-base ligands (N, O) [N, O = 5-Me-3-tert-Bu-(Ar-N=CH)C6H2O (1, Ar = 2,6-Me2C6H3; 2, Ar = 2,6-i-Pr2C6H3)], [Ni(Ph)(PPh3)(N,O)1, with beta-ketiminato ligands (N, O) [N, O = CH3COCHC=(CH3)N-Ar (3, Ar = 2,6-Me2C6H3; 4, Ar = 2,6-i-Pr2C6H3)] and [Ni(N, N)(PPh3)], and with beta-diketiminato ligands (N, N) [5, N, N = [2,6-i-Pr-2(C6H3)N=C(CH3)](2)CH] have been synthesized and characterized. The molecular structures of complexes 1, 4, and 5 have been confirmed by X-ray single-crystal analyses. Although their ligands have similar structures, complex 4 possesses a structure similar to that of four-coordination nickel with complex 1, while complex 5 reveals a rare three-coordination nickel geometry. These compounds show high catalytic activities of up to 3.16 x 10(7) g PNB mol(-1) Ni h(-1) for the addition polymerization of norbornene in the presence of modified methylaluminoxane (MMAO) as cocatalyst. Catalytic activities, polymer yield, molecular weights, and molecular weight distributions of polyborbornene have been investigated under various reaction conditions.
Resumo:
Bronsted acid-base ionic liquids (GILs) based on guanidine and acetic acid are efficient reaction media for palladium-catalyzed Heck reactions. They offer the advantages of high activity and reusability. GIL2 plays multiple roles in the reaction: it could act as solvent, as a strong base to facilitate beta-hydride elimination, and as a ligand to stabilize activated Pd species.
Resumo:
We demonstrate the production of copper phthalocyanine (CuPc) based p-type hybrid permeable-base transistors, which operate at low voltages having high common-base current gains. These transistors are prepared by evaporating a thin metal layer (Ag or Al) that acts as base on top of a Si substrate that acts as collector. In the sequence CuPc and Au are thermally sublimated to produce the emitter, constituting a quite simple device production procedure with the additional advantage of allowing higher integration due to its vertical architecture.
Resumo:
A series of chromium(III) complexes LCrCl3 (4a-c) bearing chelating 2,2'-iminodiphenyisulfide ligands [L = (2-ArMeC=NAr)(2)S] was synthesized in good yields from the corresponding ligands and CrCl3.(THF). Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display moderate activities towards ethylene polymerization, and produce highly linear polyethylenes with broad molecular weight distribution. Polymer yields, catalyst activities and the molecular weights, as well as the molecular weight distributions of the polymers can be controlled over a wide range by the variation of the structures of the chromium(III) complexes and the polymerization parameters, such as Al/Cr molar ratio, reaction temperature and ethylene pressure.
Resumo:
An asymmetrical double Schiff-base Cu(II) mononuclear complex, HCuLp (H(3)Lp is N-3-carboxylsalicylidene-N'-5-chlorosalicylaldehyde-1,3-diaminopropane) and a heterometal trinuclear complex with double molecular structure (CuLp)(2)Co center dot 5H(2)O have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structure of the heterotrinucler complex was determined by X-ray analysis. Each asymmetric unit within the unit cell of the complex contains two heterotrinuclear neutral molecules (a) [CuLpCoCuLp], (b) [(CuLpH(2)O) CoCuLp] and four uncoordinated water molecules. In the two neutral molecules, the central Co2+ ions are located at the site of O-6 with a distorted octahedral geometry, one terminal Cu2+ ion (Cu(3)) at the square-pyramidal environment of N2O3, and the other three at the square planar coordination geometry with N2O2 donor atoms. Magnetic properties of the heterotrinucler complex have been determined in the temperature range 5-300 K, indicating that the interaction between the central Co2+ ion and the outer Co2+ ions is antiferromagnetic.