80 resultados para MULTIPLE-ELECTRON-CAPTURE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass was studied by in situ scanning electron microscopy (SEM) quasi-static uniaxial compression tests at room temperature. Multiple shear bands were observed with a large plasticity. Microscopic examination demonstrates that slipping, branching and intersecting of multiple shear bands are the main mechanisms for enhancing the plasticity of this metallic glass. Additionally, nano/micro-scale voids and cracks at the intersecting sites of shear bands and preferential etching of shear bands were observed as well. These observations demonstrated that the formation of shear bands in bulk metallic glasses is resulted mainly from local free volume coalescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN/GAN multiple quantum wells grown by metal-organic chemical vapor deposition were irradiated with the electron beam from a low energy accelerator. The electron irradiation induced a redshift by 50 meV in the photoluminescence spectra of the electron-irradiated InGaN/GaN quantum wells, irrespective of the exposure time to the electron beam which ranges from 10 to 1000s. The localization parameter extracted from the temperature-dependent photoluminescence spectra was found to increase in the Irradiated samples. Analysis of the intensity of the longitudinal optical phonon sidebands showed the enhancement of the exciton-phonon coupling, indicating that the excitons are more strongly localized in the irradiated InGaN wells. The change in the pholotuminescence spectra. In the irradiated InGa/GAN quantum wells were explained in terms of the increase of indium concentration in indium rich clusters induced by the electron irradiation (C) 2009 The Japan Society of Applied Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relaxation of the misfit strain by the formation of misfit dislocations in InxGa1-xN/GaN multiple quantum wells grown by metal-organic chemical-vapor deposition was investigated by the cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. It is found that the misfit dislocations generated from strain relaxation are all pure-edge threading dislocations with burgers vectors of b=1/3<11 (2) over bar0>. The misfit dislocations arise from the strain relaxation due to the thickness of strained layer greater than the critical thickness. The relaxation of strained layer was mainly achieved by the formation of dislocations and localization of In, while the dislocations changed their slip planes from {0001} to {10 (1) over bar0}. With the increasing temperature, the efficiency of photoluminescence decrease sharply. It indicates that the relaxation of the misfit strain has a strong effect on optical efficiency of film. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN/GaN multiquantum-well (MQW) structures grown by metalorganic chemical-vapor deposition on n-type GaN and capped by p-type GaN were investigated by cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. For the sample with strained-layer thicknesses greater than the critical thicknesses, a high density of pure edge type threading dislocations generated from MQW layers and extended to the cap layer was observed. These dislocations result from a relaxation of the strained layers when their thicknesses are beyond the critical thicknesses. Because of indium outdiffusion from the well layers due to the anneal effect of Mg-doped cap layer growth and defects generated from strain relaxation, the PL emission peak was almost depressed by the broad yellow band with an intensity maximum at 2.28 eV. But for the sample with strained-layer thicknesses less than the critical thicknesses, it has no such phenomenon. The measured critical thicknesses are consistent with the calculated values using the model proposed by Fischer, Kuhne, and Richter. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of dislocations on photoluminescence (PL) of InGaN/GaN multiple quantum wells (MQWs) is investigated by triple-axis x-ray diffraction (TAXRD), transmission electron microscopy (TEM), and PL spectra. The omega scan of every satellite peak by TAXRD is adopted to evaluate the mean screw and edge dislocation densities in MQWs. The results show that dislocations can lead to a reduction of the PL-integrated intensity of InGaN/GaN MQWs under certain conditions, with edge dislocations playing a decisive role. Additionally, the dislocations can broaden the PL peak, but the effect becomes evident only under the condition when the interface roughness is relatively low. (C) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-x Ga1-xN/GaN multiple quantum well (MQW) samples with strain-layer thickness lager/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using time-resolved photoluminescence and time-resolved Kerr rotation spectroscopy, we explore the unique electron spin behavior in an InAs submonolayer sandwiched in a GaAs matrix, which shows very different spin characteristics under resonant and non-resonant excitations. While a very long spin relaxation lifetime of a few nanoseconds at low temperature is observed under non-resonant excitation, it decreases dramatically under resonant excitation. These interesting results are attributed to the difference in electron-hole interactions caused by non-geminate or geminate capture of photo-generated electron-hole pairs in the two excitation cases, and provide a direct verification of the electron-hole spatial correlation effect on electron spin relaxation. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.5 mu m n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold Current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1/X dG/dn .