186 resultados para HOT-WALL CVD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Hohlraum-like configuration is proposed for realizing a simple compact source for neutrons. A laser pulse enters a tiny thin-shelled hollow-sphere target through a small opening and is self-consistently trapped in the cavity. The electrons in the inner shell-wall region are expelled by the light pressure. The resulting space-charge field compresses the local ions into a thin layer that becomes strongly heated. An inward expansion of ions into the shell cavity then occurs, resulting in the formation at the cavity center of a hot spot of ions at high density and temperature, similar to that in inertial electrostatic confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pseudo-spin model is intended to describe the physical dynamics of unbound electrons in the wall of cytoskeletal microtubule (MT). Due to the inherent symmetry of the structure and the electric properties in the MT, one may treat it as a one-dimensional ferroelectric system, and describe the nonlinear dynamics of dimer electric dipoles in one protofilament of the MT by virtue of the double-well potential. Consequently, the physical problem has been mapped onto the pseudo-spin system, and the mean-field approximation has been taken to get some physical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubules (MT) are composed of 13 protofilaments, each of which is a series of two-state tubulin dimers. In the MT wall, these dimers can be pictured as "lattice" sites similar to crystal lattices. Based on the pseudo-spin model, two different location states of the mobile electron in each dimer are proposed. Accordingly, the MT wall is described as an anisotropic two-dimensional (2D) pseudo-spin system considering a periodic triangular "lattice". Because three different "spin-spin" interactions in each cell exist periodically in the whole MT wall, the system may be shown to be an array of three types of two-pseudo-spin-state dimers. For the above-mentioned condition, the processing of quantum information is presented by using the scheme developed by Lloyd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, by adopting the ion sphere model, the self-consistent. field method is used with the Poisson-Boltzmann equation and the Dirac equation to calculate the ground-state energies of H-like Ti at a plasma electron density from 10(22) cm(-3) to 10(24) cm(-3) and the electron temperature from 100 eV to 3600 eV. The ground-state energy shifts of H-like Ti show different trends with the electron density and the electron temperature. It is shown that the energy shifts increase with the increase in the electron density and decrease with the increase in the electron temperature. The energy shifts are sensitive to the electron density, but only sensitive to the low electron temperature. In addition, an accurately fitting formula is obtained to fast estimate the ground-state energies of H-like Ti. Such fitted formula can also be used to estimate the critical electron density of pressure ionization for the ground state of H-like Ti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The digital holographic interferometry is used in the dynamic and static measurements of phase variation induced by domain inversion. For the first time, to the authors' knowledge, they observe the existence of ridge-shape phase distribution adjacent to 180 degrees domain wall in congruent LiNbO3 crystal. During the domain wall motion, the phase variations are not uniform but have obvious relaxations. In the static measurement, the ridge elevation can vary linearly with the uniform electric field. The reasonable assumptions are proposed to explain these effects. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlON with a composition of Al23O27N5 was prepared by hot pressing at temperatures lower than 1900°C. The microstructures and final properties, including both mechanical properties and optical properties, of the sintered specimens were studied. The results showed that sintering temperature had a great influence on the densification of specimens and could lead to very different properties, especially the optical transmittance and the maximum infrared transmission.