267 resultados para Electron transfer
Resumo:
Emissions of europium (II) and europium (III) have been observed in SrMgF4:Eu and SrMgF4:Eu,Ce phosphors which are synthesized in Ar flow, It is notable that the intensity of the ESR peaks corresponding to Eu2+ is increased when cerium ion is incorporated which can be explained by electron transfer mechanism.
Resumo:
Emission of europium(II) and europium(III) have been observed in SrMgF4 xEu, yTb phosphors winch are synthesized in Ar flow. The valence state of En is influenced by terbium, It is noted that the intensities of the ESR peaks corresponding to Eu2+ are increased when terbium ion is codopech this can be explained by electron transfer mechanism which is Eu3++Tb3+-->Eu2++Tb4+. And its equilibrium constant is calculated.
Resumo:
The rapid scan spectrometer was used to determine the heterogeneous electron transfer rate parameters for the oxidation of Biliverdin in DMF by single potential step thin layer spectroelectrochemical techniques and yielded an average formal heterogeneous electron transfer rate constant K(s, h)0' = 2.45 (+/-0.12) x 10(-4) cm s-1, electrochemical transfer coefficient alpha = 0.694+/-0.008. The oxidation process of Biliverdin was also studied and the formal potential E0 = 0.637 V (vs. Ag/AgCl) was obtained.
Resumo:
The adsorption of bis(4-pyridyl)disulphide (PySSPy) and 4.4'-bipyridyl (PyPy) on a gold electrode was studied using cyclic voltammetry. The adsorption isotherms and equilibrium constants (1 X 10(6) mol-1 l for PyPy and 6 x 10(6) Mol-1 l for PySSPy) were determined. The effect of pH on the electrochemical behaviour of cytochrome c was studied on the PySSPy-modified gold electrode. The results show that cytochrome c can only transfer electrons on a deprotonated electrode surface. When the pH is decreased, the standard heterogeneous rate constant of cytochrome c on the modified gold electrode decreases and the electrochemical behaviour changes from a quasi-reversible to an irreversible process.
Resumo:
A glucose oxidase (GOD) electrode with ferrocene (Fc) used as an electron transfer mediator has been described. Using Nafion, Fc was modified on a glassy carbon (GC) electrode surface, and glucose oxidase was then immobilized on the Fc-Nafion film, forming a GOD-Fc-Nafion enzyme electrode. The preparation method was quite simple and rapid. The enzyme electrode showed a reversible reaction of the redox couple (Fc+/Fc), used in a biosensor system, displayed a sensitive catalytic current response (response time was less than 20 s) on variation of the glucose concentration, with a wide linear range up to 16 mM and with good repeatability. The enzyme electrode showed almost no deterioration over the course of three weeks. There was little or no interference from electro-active anions, such as ascorbic acid, to the determination of glucose based on Nafion film and lower oxidizing potentials of the enzyme electrode.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.
Resumo:
The heterogeneous electron transfer reaction of hemeproteins including hemoglobin, myoglobin and cytochrome C at Pt mesh electrode adsorbed methylene blue has been investigated. Thin-layer spectroelectrochemical technique was used for observing the electron transfer processes of three kinds of proteins, and the corresponding electrode rate constants were measured.
Resumo:
The electrochemical behavior of myoglobin at a Brilliant Cresyl Blue (BCB) modified platinum gauze electrode and spiral pt wire in the BCB solution in optically transparent thin layer cell base been investigated by using cyclic potential-absorbance method and double potential step chronoabsorptometry. The results reveal a reversible electron transfer resection of myoglobin. Exhaustive reductive and oxidative electrolyses are achieved at the modified platinum surface in 20 and 100s respectively. The formal h...
Resumo:
This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A single-electron turnstile and electrometer circuit was fabricated on a silicon-on-insulator substrate. The turnstile, which is operated by opening and closing two metal-oxide-semiconductor field-effect transistors (MOSFETs) alternately, allows current quantization at 20 K due to single-electron transfer. Another MOSFET is placed at the drain side of the turnstile to form an electron storage island. Therefore, one-by-one electron entrance into the storage island from the turnstile can be detected as an abrupt change in the current of the electrometer, which is placed near the storage island and electrically coupled to it. The correspondence between the quantized current and the single-electron counting was confirmed.
Resumo:
The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.
Resumo:
A quantum chemistry based Green's function formulation of long-range charge transfer in deoxyribose nucleic acid (DNA) double helix is proposed. The theory takes into account the effects of DNA's electronic structure and its incoherent interaction with aqueous surroundings. In the implementation, the electronic tight-binding parameters for unsolvated DNA molecules are determined at the HF/6-31G* level, while those for individual nucleobase-water couplings are at a semiempirical level by fitting with experimental redox potentials. Numerical results include that: (i) the oxidative charge initially at the donor guanine site does hop sequentially over all guanine sites; however, the revealed rates can be of a much weaker distance dependence than that described by the ordinary Ohm's law; (ii) the aqueous surroundings-induced partial incoherences in thymine/adenine bridge bases lead them to deviate substantially from the superexchange regime; (iii) the time scale of the partially incoherent hole transport through the thymine/adenine pi stack in DNA is about 5 ps. (C) 2002 American Institute of Physics.