180 resultados para Damage quantification
Resumo:
We have investigated the damage for ZrO2/SiO2 800 nm 45 degrees high-reflection mirror with femtosecond pulses. The damage morphologies and the evolution of ablation crater depths with laser fluences are dramatically different from that with pulse longer than a few tens of picoseconds. The ablation in multilayers occurs layer by layer, and not continuously as in the case of bulk single crystalline or amorphous materials. The weak point in damage is the interface between two layers. We also report its single-short damage thresholds for pulse durations ranging from 50 to 900 fs, which departs from the diffusion-dominated tau(1/2)(p) scaling. A developed avalanche model, including the production of conduction band electrons (CBE) and laser energy deposition, is applied to study the damage mechanisms. The theoretical results agree well with our measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Single-shot laser damage threshold of MgO for 40-986 fs, 800 nm laser pulses is reported. The pump-probe measurements with femtosecond pulses were carried out to investigate the time-resolved electronic excitation processes. A theoretical model including conduction band electrons (CBE) production and laser energy deposition was applied to discuss the roles of multiphoton ionization (MPI) and avalanche ionization in femtosecond laser-induced dielectric breakdown. The results indicate that avalanche ionization plays the dominant role in the femtosecond laser-induced breakdown in MgO near the damage threshold. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report on the damage threshold in CaF2 crystals induced by femtosecond laser at wavelengths of 800 nm and 400 nm, respectively. The dependences of ablation depths and ablation volumes on laser fluences are also presented. We investigate theoretically the coupling constants between phonon and conduction band electrons (CBE), and calculate the rates of CBE absorbing laser energy. A theoretical model including CBE production, laser energy deposition, and CBE diffusion is applied to study the damage mechanisms. Our results indicate that energy diffusion greatly influences damage threshold and ablation depth.
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800
Resumo:
We report the single-shot damage thresholds of MgF2/ZnS onmidirectional reflector for laser pulse durations from 50 A to 900 fs. A coupled dynamic model is applied to study the damage mechanisms, in which we consider not only the electronic excitation of the material, but also the influence of this excitation-induced changes in the complex refractive index of material on the laser pulse itself. The results indicate that this feedback effect plays a very important role during the damage of material. Based on this model, we calculate the threshold fluences and the time-resolved excitation process of the multiplayer. The theoretical calculations agree well with our experimental results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
We present a destructive method for detecting and measuring subsurface damage of Nd-doped phosphate glasses. An instrument based on the dimple method - a destructive method - was developed. Subsurface damage depth produced in each fabrication procedure was obtained. We extend the surface roughness-subsurface damage relation to Nd-doped phosphate glasses. The constant ratio of subsurface damage and surface roughness was obtained as well. We also analyse the relation of abrasive size and subsurface damage experimentally. From a measurement of the surface roughness or abrasive size, one can obtain an accurate estimate of the damage layer thickness that must be eliminated by polishing or subsequent grinding operations. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.
Resumo:
The laser-induced damage threshold (LIDT) and damage morphology of antireflection (AR) coatings on quartz and sapphire are investigated. A very interesting phenomena is found in the measurement. In the case of a single pulse laser, the LIDT of the AIR coatings on quartz is higher than that of sapphire. On the contrary, for a free-pulse laser, the LIDT of AIR coatings on sapphire is higher than that of quartz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Laser conditioning effects of the HfO2/SiO2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multishot laser radiation were investigated. The HfO2/SiO2 AR coatings were prepared by E-beam evaporation (EBE). The singleshot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly > 80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to < 5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples. © 2004 Elsevier B.V. All rights reserved.
Resumo:
ZrO2 coatings were deposited on different substrates of Yb:YAG and fused silica by electron beam evaporation. After annealed for 12 h at 673 and 1073 K, respectively, weak absorption of coatings was measured by surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was determined also. The crystalline phase of ZrO2 coatings and the size of the crystal grain were investigated by X-ray diffraction. It was found that microstructure of ZrO2 coatings was dependent on both annealing temperature and substrate structure, and coatings containing monoclinic phases had higher damage threshold than others. Due to the strong absorption of Yb:YAG, damage threshold of coatings on Yb:YAG was much less than that on fused silica. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.
Resumo:
The origin, character, analysis and treatment of subsurface damage (SSD) were summarized in this paper. SSD, which was introduced to substrates by manufacture processes, may bring about the decrease of laser-induced damage threshold (LIDT) of substrates and thin films. Nondestructive evaluation (NDE) methods for the measurement of SSD were used extensively because of their conveniences and reliabilities. The principle, experimental setup and some other technological details were given for total internal reflection microscopy (TIRM), high-frequency scanning acoustic microscopy (HFSAM) and laser-modulated scattering (LMS). However, the spatial resolution, probing depth and theoretic models of these NDE methods demanded further studies. Furthermore, effective surface treatments for minimizing or eliminating SSD were also presented in this paper. Both advantages and disadvantages of ion beam etching (IBE) and magnetorheological finishing (MRF) were discussed. Finally, the key problems and research directions of SSD were summarized. (c) 2005 Elsevier GmbH. All rights reserved.