97 resultados para Cysteine proteases
Resumo:
In this study, the immunoglobulin M heavy chain gene of European eel (Anguilla anguilla) was cloned and analyzed. The full-length cDNA of the IgM heavy chain gene (GenBank accession no. EF062515) has 2089 nucleotides encoding a putative protein of 581 amino acids. The IgM heavy chain was composed of leader peptide (L), variable domain (VH), CH1, CH2. Hinge, CH3, CH4, and C-terminus and two novel continuous putative N-glycosylation sites were found close to the second cysteine of CH3 in A. anguilla-H1 and A. anguilla-H2. The deduced amino acid sequence of the European eel IgM heavy chain constant region shared similarities to that of the Ladyfish (Elops saurus). Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), Grass carp (Ctenopharingodon idella), Common carp (Cyprinus carpio), Channel catfish (Ictalurus punctatus), and the orange-spotted grouper (Epinephelus coioides) with the identity of 46.1%, 39.7%, 38.9%, 32.4%, 32.3%, 31.7%, and 30.7%, respectively. The highest level of IgM gene expression was observed in the kidney, followed by the spleen, gills, liver, muscle and heart in the apparently healthy European eels. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cathepsin B is a lysosomal cysteine protease of the papain-like enzyme family with multiple biological functions. In this study, Paralichthys olivaceus cathepsin B (PoCatB) cDNA was isolated from flounder embryonic cells (FEC) treated with UV-inactivated grass carp hemorrhage virus (GCHV) and subsequently identified as a vitally induced gene. The full length cDNA of PoCatB is 1801 bp encoding 330-amino acids. The deduced protein has high homology to all known cathepsin B proteins, containing an N-terminal signal peptide, cysteine protease active sites, the occluding loop segment and a glycosylation site, all of which are conserved in the cathepsin B family. PoCatB transcription of FEC cells could be induced by turbot (Scophthalmus maximus) rhabdovirus (SMRV), UV-inactivated SMRV, UV-inactivated GCHV, poly I:C or lipopolysaccharide (LPS), and SMRV or poly I:C was revealed to be most effective among the five inducers. In normal flounder, PoCatB mRNA was detectable in all examined tissues. Moreover, SMRV infection could result in significant upregulation of PoCatB mRNA, predominantly in spleen, head kidney, posterior kidney, intestine, gill and muscle with 18.2,10.9, 24.7,12, 31.5 and 18 fold increases at 72 h post-infection respectively. These results provided the first evidence for the transcriptional induction of cathepsin B in fish by virus and LPS, indicating existence of a novel function in viral defense. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene, 53R, was cloned and characterized from Rana grylio virus (RGV), a member of the family Iridoviridae. Database searches found its homologues in all sequenced iricloviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV 53R is a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R-GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.
Resumo:
Partial cDNA sequences of TCR gamma and CD3 gamma/delta were isolated from the thymus of common carp (Cyprinus carpio L.) by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp TCR gamma and CD3 gamma/delta were obtained by means of 3' RACE and 5' RACE, respectively. The full length of carp TCR gamma chain is 1368 bp and encodes 326 amino acids including a signal peptide region of 19 amino acids and a transmembrane region of 23 amino acids at the C-terminal region from aa 291 to 313. The V region of carp TCR gamma contains 109 amino acids, the core motif FGXG in J segment was also found in carp TCR gamma. The C region of carp TCR gamma contains the characteristic CX6PX6WX45C motif. The CP region of carp TCR C gamma contains 37 amino acids. The full length of carp CD3 gamma/delta is 790 bp and encodes 175 amino acids including a signal peptide region of 17 amino acids and a transmembrane region of 23 amino acids from aa 93 to 115. Similar to other known CD3 gamma/delta s, four cysteine residues in the extracellular domain and an immunoreceptor tyrosine-based activation motif ITAM (YxxL/Ix6-8YxxL/I) in the intracellular domain are also included in carp CD3 gamma/delta. Differing from other known CD3 gamma/delta s, carp CD3 gamma/delta tacks the CXXCXE motif in the extracellular domain. RTPCR analysis demonstrated that the expression of TCR gamma gene was mainly in the thymus and gill of 6-month carp, but in 18-month carp, TCR gamma gene was detected in all the examined tissues. The expression of CD3 gamma/delta gene was detected in all examined tissues of 6 and 18-month carp; among them, the highest expression level was in the thymus of 6-month carp. In situ hybridization showed that CD3 gamma/delta-expressing cells were widely distributed in the head kidney, spleen and kidney of carp, whereas in the thymus, they were densely distributed in the lymphoid outer zone and scattered in the epithelioid inner zone. (c) 2007 Published by Etsevier Ltd.
Resumo:
The distribution and dynamics of microcystins in various organs of the phytoplanktivorous bighead carp were studied monthly in Lake Taihu, which is dominated by toxic cyanobacteria. There was a good agreement between LC-MS and HPLC-UV determinations. Average recoveries of spiked fish samples were 63% for MC-RR and 71% for MC-LR. The highest MC contents in intestine, liver, kidney and spleen were 85.67, 2.83, 1.70 and 1.57 mu g g(-1) DW, respectively. MCs were much higher in mid-gut walls (1.22 mu g g(-1) DW) than in hind- and fore-gut walls (0.31 and 0.18 mu g g(-1) DW, respectively), suggesting the importance of mid-gut wall as major site for MC absorption. A cysteine conjugate of MC-LR was detected frequently in kidney. Among the muscle samples analyzed, 25% were above the provisional tolerable daily intake level by WHO. Bighead is strongly resistant to microcystins and can be used as biomanipulation fish to counteract cyanotoxin contamination in eutrophic waters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A new multi-stress-inducible metallothionein (MT) gene isoform has been cloned and characterized from the ciliate Tetrahymena pyriformis. Both the 5'- and 3'-UT regions of the Tp-MT2 gene are very different from the previously reported Tp-MT1 isoform in this organism and from other described MT genes in Tetrahymena pigmentosa and Tetrahymena thermophila. The putative protein sequence of Tp-MT2 contains cysteine clusters with characteristics of the typical Tetrahymena Cd-inducible MT genes. However, the sequence has a special feature of four intragenic tandem repeats within its first half, with a conserved structural pattern x(5/8)CCCx(6)CCx(6)CxCxNCxCCK. To investigate the transcriptional activities of both Tp-MT2 and Tp-MT1 genes toward heavy metals (Cd, Hg, Cu, Zn) and H2O2, the mRNA levels of these two isoforms were evaluated by means of real-time quantitative PCR. Results showed that Tp-MT2 had a higher basal expression level than Tp-MT1 and both genes were induced by Cd, Hg, Cu, and Zn ions after short exposure (I h), although to different extents. Cd was the most effective metal inducer of both two isoforms, but the relative expression level of Tp-MT2 was much lower than that of Tp-MT1. Different expression patterns were also shown between the two genes when treated with Cd over a period of 24 h. We suggest that TpMT-1 plays the role of a multi-inducible stress gene, while TpMT-2 may have a more specific function in basal metal homeostasis although it may have undergone a functional differentiation process. The putative functional significance and evolutionary mode of the TpMT-2 isoform are discussed. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.
Resumo:
We report the cloning of a novel antimicrobial peptide gene, termed rtCATH_1, found in the rainbow trout, Oncorhynchus mykiss. The predicted 216-residue rtCATH_1 prepropeptide consists of three domains: a 22-residue signal peptide, a 128-residue cathelin-like region containing two identifiable cathelicidin family signatures, and a predicted 66-residue C-terminal cationic antimicrobial peptide. This predicted mature peptide was unique in possessing features of different known (mammalian) cathelicidin subgroups, such as the cysteine-bridged family and the specific amino-acid-rich family. The rtCATH_1 gene comprises four exons, as seen in all known mammalian cathelicidin genes, and several transcription factor binding sites known to be of relevance to host defenses were identified in the 5' flanking region. By Northern blot analysis, the expression of rtCATH_1 was detected in gill, head kidney, and spleen of bacterially challenged fish. Primary cultures of head kidney leukocytes from rainbow trout stimulated with lipopolysaccharide or poly(I (.) C) also expressed riCATH_1. A 36-residue peptide corresponding to the core part of the fish cathelicidin was chemically synthesized and shown to exhibit potent antimicrobial activity and a low hemolytic effect. Thus, rtCATH_1 represents a novel antimicrobial peptide gene belonging to the cathelicidin family and may play an important role in the innate immunity of rainbow trout.
Resumo:
In order to identify genes encoding the outer membrane proteins (OMPs) of the myxobacter Flavobacterium columnare G(4), the expression library of the bacterium was screened by using rabbit antisera developed against its OMPs. Positive colonies of Escherichia coli M15 containing fragments encoding the bacterial OMPs were selected for cloning the relevant genes by genomic walking methods. Two genes encoding a membrane-associated zinc metalloprotease and prolyl oligopeptidase are reported in this paper. The membrane-associated zinc metalloprotease gene (map) is 1800 bp in length, coding for 449 amino acids (aa). Despite the presence of a conserved motif HEXXH for all metalloproteases, the special HEXXH similar to 32 aa similar to E motif of the F. columnare G(4) Map and its low level of identity with other reported zinc-containing metalloproteases may imply that the membrane-associated zinc metalloprotease of F. columnare G(4) represents a new family of zincins. The gene encoding prolyl oligopeptidase (Pop), a serine proteinase, is 2352 bp in length, coding for 649 aa. Sequence homology analysis revealed that the Pop is also novel as it has <50% identity with other reported prolyl oligopeptidase family proteins. The present study represents the first to employ anti-fish bacterial OMP sera to screen genes of membrane-associated proteases of fish pathogenic bacteria, and to provide necessary information for the examination of the role of the two genes in the infection and pathogenesis of F. columnare.
Resumo:
Total alkaline phosphatase activity (APA) and soluble reactive phosphorus (SRP) concentrations were measured in municipal wastewater, and a shallow Chinese freshwater lake receiving it. Activities of Dissolved alkaline phosphatase ( ADAP) in overlying and interstitial water were also analyzed monthly at three sites for several years. The lake was enriched with SRP and alkaline phosphatase by discharge of the wastewater, indicating that the inclusion of APA for estimating water pollution was reasonable. Annual data showed that APA in coarser fraction was significantly higher at the site receiving more wastewaters, both in surface and overlying water, suggesting that resuspension of enzyme most likely occurred in the basin heavily discharged. ADAP was an order of magnitude higher in the wastewater than those in lake waters, and was generally higher in interstitial water, a feature more striking at the site receiving more discharges. Besides, it was irrespectively inhibited by Na2WO4, L-cysteine and EDTA-Na, but stimulated by Cu2+, Zn2+, CTAB and Triton X-100 in interstitial, overlying and surface waters. This similarity of responding patterns to the stressors indicated an analogy between dissolved alkaline phosphatase in water column and that in interstitial water, supporting the hypothesis that the polluted sediments act as source of dissolved alkaline phosphatase in eutrophic lakes.
Resumo:
按文献方法合成了一些过渡金属的酞菁络合物(MPc,其中:M = Fe、Co、Ni、Cu),并对已合成的金属酞菁进行了提纯、鉴定(IR、UV。元素分析)。为了研究第五配位体对酞菁铁催化性能的影响,我们从以下几个方面探讨了第五配位体的作用:(1)测定了不同轴向配体L存在时FePc(L)_2型络合物的电子光谱,考察了随轴向配体L变化电子光谱的改变,为尚无定论的外加谱带(Extra banol)II的归属提供了一定的证据。根据位子谱带β和Q_(0-0)之间的吸收II的位置和强度随L的变化趋势,将吸收峰II归为Q_(1g)(dZ~2)→ b_(1u) (π~*)跃迁。轴向配体对FePc的相互作用可分为σ-作用和π-作用,轴向配位体的自由碱碱度P_(Ka)可作为σ-作用大小的量度。我们发现:PK_a与Q_(0-0)吸收峰的能量存在着线性关系。根据FePc(L)_2络合物的结构特点和配位场理论,阐明了Q_(0-0)的红移程度只与轴向配体的σ-作用有关,而II的能量要受到轴向配体的σ-作用和π-作用影响的规律。根据上述结论,探讨了配位原子分别为O、N、S等元素的轴向配体对FePc的相互作用规律。对于配位原子为O和N的轴向配位体,配体对中心离子的作用以σ-作用为主,其强度为:DMSO < DMF < THF Py < Im < Pi_P < ButNH_2 < NH_3 < CN~-配位原子为S的轴向配体容易与中心离子形成具有电子授受作用的反馈π键(M<->~п_σL),因此具有较强的π作用。(2)为了进一步讨论轴向配体的作用对FePc氧分活化性能的影响,借助于电子光谱的变化对FePc/DMSO、FePc/DMF、FePc/THF体系的与O_2作用动力学进行了跟踪,提出了相应的反应动力学和机理,理论动力学机理通过计算得到的动力学曲线与实验结果一致,从而验证了所提出的反应机理。实验结果表明:不同的第五配位体可改变FePc与O_2反应动力学的控制步骤,反位配体(第五配体)的σ-作用越大,配位O_2分子中O-O键断裂的趋势增大,同时生成桥氧(μ-oxo)二聚物的趋势也增大。(3)以半胱氨酸(Cystecine)为第五配体,研究了FePc-Cysteine模拟体系对苯胺的羟化学反应,提出了相应的催化反应机理,解释了羟化反应中所观察到了一些实验事实。实验表明:在此体系中苯胺的羟化需要在半胱氨酸过量的条件下进行,并且弱酸性和非极性条件对苯胺的羟化反应有利。这说明RS~-在反应中不仅是一个第五配体,而且也起到电子授与体的作用。羟化反应条件与细胞色素P-450生物体系所需条件基本一致,因此,FePc-Cysteine体系是一个比较好的P-450模拟体系。实验还表明σ-作用可以使不可逆的自动氧化过程加速,单纯的σ-作用对羟化反应并不十分有利,π-作用可以使活性中间体得到稳定,因而在生物化学上有重要意义的半胱氨酸是一个比较理想的第五配位体。
Resumo:
磷脂酶AZ(PLA2)是蛇毒中含量较为丰富的一类作用于梭酷键的酶。迄今为止,己有多种形式的PLA2从不同地域、不同种属的蛇毒中得以纯化并进行了较为系统的研究。其中,以VipoXin为代表的异二聚体形式PLA2较为引人注目,原因在于这种形式不同于此类蛋白家族中的诸多其它个体。目前,己经有许多关于此异二聚体PL凡生物学特性的报道,包括对此类形式存在原因、活性变化、结构表现、系统进化等方面的讨论。然而至今,这种以异二聚体形式存在的PLA2仅发现于几种蛙亚科(ViperinaeSubfamily)蛇种的蛇毒中,其中就包括我国台湾岛的圆斑蜂蛇台湾亚种(Doboiarusselliiformosensis),而蝮亚科(CrotaiinaeSubfamil)蛇种的蛇毒至今却没有此类报道。我国大陆西南端接壤东南亚,存在于云南、福建一带的圆斑蛙蛇隶属圆斑蛙蛇泰国亚种(Daboiarusselliisiamensis),那么这种蛇毒中是否也含有异二聚体形式的PLA2呢?本工作就此疑问对云南产圆斑蛙蛇泰国亚种(D.r.siamensis)蛇毒中的PLA2进行了研究,结果得到三个新的PLAZ,分别命名为DRS-PLA2-I、DRS-PLA2-II和DRS-PLA2-III。其中,DRS-PLA2-I的分子量为13864.06Da,理论pI为4.56,PLA2活性为12.35μmol/mg/min;DRS-PLA2-II的分子量为13635.99Da,理论pI为8.74,PLA2活性为8.76μmol/mg/min;DRS-PLA2-III的分子量为13619.80Da,理论厂为4.61,无PLA2活性。这三个蛋白酶N端的30个氨基酸残基恰好和三个阳性克隆的cDNA序列推导的蛋白序列吻合,结合已经报道的PLA2蛋白家族蛋白序列的保守性表现,我们可以断定它们之间存在对应关系。分子系统学分析表明DRS-PLA2-II和DRS-PLA2-III在进化关系上和蛙亚科的异二聚体PLA2关系较近,并且二者酶活性分别与异二聚体PLA2的Normalchain和Inhibitorchain相一致,只是没有发现类似Vipoxin形式的异二聚体结合蛋白。这些分析表明DRS-PLA2-nORS-PLA2-III类似圆斑蛙蛇台湾亚种(D.r.forlnos翻s沽)中的PV-4/RV-7,是PLA2异二聚体的一种特殊形式,在进化上滞后于VinOXin。另夕卜本工作还相继从云南产菜花烙铁头(Trimeresrusjerdonii)蛇毒和湖南产烙铁头(Trimeresurusmucrosquamatus)蛇毒中分离得到Jerdonase和TmF。前者为一个丝氨酸蛋白酶性质的、具有纤维蛋白原水解作用和激肤释放酶原水解作用双重活性表现的、高分子量的份五brinogenase,其活性表现可以被PMSF彻底抑制,而EDTA对此却没有影响。其它的几种抑制剂如大豆胰蛋白酶抑制剂、l-cysteine、DTT对Jerdonase的活性表现也有不同程度的影响。在Jerdonase的这些生化特性上中,分子量的大小和对纤维蛋白酶水解的特性这两方面有别于蛇毒中诸多其它来源的同类蛋白;后者T淤为一个舒缓激肚增强肤(BradykninPQtentiatingPePtide,BPP),电离质谱分析表明其分子量为1110.7Da。此小肚氨基酸序列为促进舒缓激肚(Bradki垃n,BK)诱导的豚鼠回肠纵行肌收缩的活力单位为(1.13±0.3)(m留L),T妊抑制血管紧张素转化酶(ACE)对BK水解的半数抑制剂量IC50为2μg。比较已报道的从Agkistrodon属和Bothrops属中纯化得到的BPP氨基酸序列发现:BPP的N端都是特征性的pGlu,C端为IIe-Pro-Pro,有高度的保守性。另外,TmF是Trimeresurus属中此类小肤的首次纯化。总之,本研究对国产的几种常见蛇毒中的几种常见蛋白多肤进行了一定程度的探讨和分析,和相同类别的其它蛋白、多肤比较可以看到,有许多相同的地方,也有许多不同的表现,研究结果为相应领域的深入研究提供资料和思路。
Resumo:
以蛋白质为基础的分析生物器件,如传感器和生物芯片等,为人们提供了有效的分析技术平台。而蛋白质固定的均质性则是评估分析生物器件质量的一个主要指标。因此,本实验以两种蛋白质为模式蛋白研究蛋白质固定的均质性问题。通过基因操纵构建融合蛋白Protein-Linker-Cysteine。在此设计中,半胱氨酸提供的自由疏基能够在金表面形成Au一S键,在琉基修饰的玻片表面形成-S-S-键实现蛋白质的均质定向固定;Linker可减少基因修饰对蛋白质折叠的影响。构建表达载体pPIC-GOxm(GOx-Linker-Cysteine),利用原生质体转化法将其转进毕氏酵母Pichia Pastoris,采用QSepharoseTM FastFlow阴离子交换柱纯化融合蛋白。动力学性质分析表明GOxm具有与野生型葡萄糖氧化酶相类似的Km和Kcat值,电化学实验结果显示Goxm传感器具有较高的响应电流;GOxm传感器具有较好的互换性,其相对误差为9.48%,GOxw(wild type GOx)相对误差为19.98%,而传统传感器的相对误差为17.54%。原子力显微镜图像显示融合蛋白GOxm能够利用金表面的HC尸位点形成类似六边型晶格的自组装单分子层,而野生型GOxw在金表面为非特异性吸附,形成多层固定导致分子间的聚集。通过利用-S-S-和非特异性吸附,分别制成GOxm蛋白芯片和Goxw蛋白芯片。酶学显色后,通过光学信号评估芯片的均质性,结果表明Goxm能够利用-S-S-形成均质定向固定,10次重复的变异系数小于60k,而GOxw则不能形成均质固定,点阵间的变异系数变化幅度非常大,从40%到80%。构建表达载体pET-BLC,pET-BL。将其转化进大肠杆菌AD494中。原子力显微镜研究整合有磷脂和经抽提去掉磷脂的蛋白在金表面的固定。原子力显微镜图像显示融合蛋白BLC能够利用Au-S键在金表面形成均匀固定,而野生型蛋白在金表面不能形成均匀的固定。蛋白质在金表面的固定受金表面拓扑结构和磷脂的影响。以上的实验结果表明通过此种固定方法可改善分析生物器件的均质性,提高其质量。
Resumo:
We investigated the effects of Ginsenoside R-e on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or 100 mu M of Ginsenoside R-e. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the H-3-arginine to H-3-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside R-e significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside R-e. And pretreatment with a NOS inhibitor N-omega-Nitro-L-arginine methyl ester (L-NAME, 100 mu M) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside R-e. Data suggested that Ginsenoside R-e is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.