129 resultados para Camera parameters
Resumo:
Tunable biaxial stresses, both tensile and compressive, are applied to a single layer graphene by utilizing piezoelectric actuators. The Gruneisen parameters for the phonons responsible for the D, G, 2D and 2D' peaks are studied. The results show that the D peak is composed of two peaks, unambiguously revealing that the 2D peak frequency (omega(2D)) is not exactly twice that of the D peak (omega(D)). This finding is confirmed by varying the biaxial strain of the graphene, from which we observe that the shift of omega(2D)/2 and omega(D) are different. The employed technique allows a detailed study of the interplay between the graphene geometrical structures and its electronic properties.
Resumo:
We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length.
Resumo:
A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present a novel X-ray frame camera with variable exposure time that is based on double-gated micro-channel plates (MCP). Two MCPs are connected so that their channels form a Chevron-MCP structure, and four parallel micro-strip lines (MSLs) are deposited on each surface of the Chevron-MCP. The MSLs on opposing surfaces of the Chevron-MCP are oriented normal to each other and subjected to high voltage. The MSLs on the input and output surfaces are fed high voltage pulses to form a gating action. In forming two-dimensional images, modifying the width of the gating pulse serves to set exposure times (ranging from ps to ms) and modifying the delay between each gating pulse serves to set capture times. This prototype provides a new tool for high-speed X-ray imaging, and this paper presents both simulations and experimental results obtained with the camera.
On the effective inversion by imposing a priori information for retrieval of land surface parameters
Resumo:
A model for analyzing the correlation between lattice parameters and point defects in semiconductors has been established. The results of this model for analyzing the substitutes in semiconductors are in accordance with those from Vegard's law and experiments. Based on this model, the lattice strains caused by the antisites, the tetrahedral and octahedral single interstitials, and the interstitial couples are analyzed. The superdilation in lattice parameters of GaAs grown at low temperatures by molecular-beam epitaxy can be interpreted by this model, which is in accordance with the experimental results. This model provides a way of analyzing the stoichiometry in bulk and epitaxial compound semiconductors nondestructively.
Resumo:
The electronic properties of wide energy gap zinc-blende structure GaN, AlN and their alloys Ga1-xAlxN are investigated using the empirical pseudopotential method. Electron and hole Effective mass parameters, hydrostatic and shear deformation potential constants of the valence band at Gamma and those of the conduction band at Gamma and X are obtained. The energies of Gamma, X, L conduction valleys of Ga1-xAlxN alloy versus Al fraction x are also calculated. The information will be useful for the design of lattice mismatched heterostructure optoelectronic devices in the blue light range.