194 resultados para Brass band music


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the ZnO/SrTiO3 heterojunction. It is found that a type-II band alignment forms at the interface. The VBO and conduction band offset (CBO) are determined to be 0.62 +/- 0.23 and 0.79 +/- 0.23 eV, respectively. The directly obtained VBO value is in good agreement with the result of theoretical calculations based on the interface-induced gap states and the chemical electronegativity theory. Furthermore, the CBO value is also consistent with the electrical transport investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimized AlGaN/AlN/GaN high electron mobility transistor (HEMT) with high mobility GaN channel layer structures were grown on 2-in. diameter semi-insulating 6H-SiC substrates by MOCVD. The 2-in. diameter GaN HEMT wafer exhibited a low average sheet resistance of 261.9 Omega/square, with the resistance un-uniformity as low as 2.23%. Atomic force microscopy measurements revealed a smooth AlGaN surface whose root-mean-square roughness is 0.281 nm for a scan area of 5 x 5 mu m. For the single-cell HEMTs device of 2.5-mm gate width fabricated using the materials, a maximum drain current density of 1.31 A/mm, an extrinsic transconductance of 450 mS/mm, a current gain cutoff frequency of 24 GHz and a maximum frequency of oscillation 54 GHz were achieved. The four-cell internally-matched GaN HEMTs device with 10-mm total gate width demonstrated a very high output power of 45.2 W at 8 GHz under the condition of continuous-wave (CW), with a power added efficiency of 32.0% and power gain of 6.2 dB. To our best knowledge, the achieved output power of internally-matched devices are the state-of-the-art result ever reported for X-band GaN-based HEMTs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MgO is a promising gate dielectric and surface passivation film for GaN/AlGaN transistors, but little is known of the band offsets in the MgO/AlN system. X-ray photoelectron spectroscopy was used to measure the energy discontinuity in the valence band (Delta E-v) of MgO/AlN heterostructures. A value of Delta E-v=0.22 +/- 0.08 eV was obtained. Given the experimental band gap of 7.83 eV for MgO, a type-I heterojunction with a conduction band offset of similar to 1.45 eV is found. The accurate determination of the valence and conduction band offsets is important for use of III-N alloys based electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the self-organized InAs quantum dots capped with thin and In0.2Al0.8As and In0.2Ga0.8As combination layers with a large ground and first excited energy separation emission at 1.35 mum at room temperature. Deep level transient spectroscopy is used to obtain quantitative information on emission activation energies and capture barriers for electrons and holes. For this system, the emission activation energies are larger than those for InAs/GaAs quantum dots. With the properties of wide energy separation and deep emission activation energies, self-organized InAs quantum dots capped with In0.2Al0.8As and In0.2Ga0.8As combination layers are one of the promising epitaxial structures of 1.3 mum quantum dot devices. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polarization-insensitive semiconductor optical amplifier (SOA) with a very thin active tensile-strained InGaAs bulk has been fabricated. The polarization sensitivity of the amplifier gain is less than 1 dB over both the entire range of driving current and the 3 dB optical bandwidth of more than 80 nm. For optical signals of 1550 nm wavelength, the SOA exhibits a high saturation output power +7.6 dBm together with a low noise figure of 7.5 dB, fibre-to-fibre gain of 11.5 dB, and low polarization sensitivity of 0.5 dB. Additionally, at the gain peak 1520 nm, the fibre-to-fibre gain is measured to be 14.1 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE). The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated analytically the band structure of photonic crystals (PCs) with alternate layers of left and right-handed materials in one-dimension. It was found that, under certain conditions, new peculiar band structures not seen in all right-handed material PCs appeared. We transformed the analytic dispersion relation into two cosine terms, and obtained an interesting band structure using the new form of dispersion equation. Conditions for obtaining such peculiar band structure were given. (c) 2005 Elsevier Ltd. All rights reserved.