6 resultados para Brass band music

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because so little is known about the structure of membrane proteins, an attempt has been made in this work to develop techniques by which to model them in three dimensions. The procedures devised rely heavily upon the availability of several sequences of a given protein. The modelling procedure is composed of two parts. The first identifies transmembrane regions within the protein sequence on the basis of hydrophobicity, β-turn potential, and the presence of certain amino acid types, specifically, proline and basic residues. The second part of the procedure arranges these transmembrane helices within the bilayer based upon the evolutionary conservation of their residues. Conserved residues are oriented toward other helices and variable residues are positioned to face the surrounding lipids. Available structural information concerning the protein's helical arrangement, including the lengths of interhelical loops, is also taken into account. Rhodopsin, band 3, and the nicotinic acetylcholine receptor have all been modelled using this methodology, and mechanisms of action could be proposed based upon the resulting structures.

Specific residues in the rhodopsin and iodopsin sequences were identified, which may regulate the proteins' wavelength selectivities. A hinge-like motion of helices M3, M4, and M5 with respect to the rest of the protein was proposed to result in the activation of transducin, the G-protein associated with rhodopsin. A similar mechanism is also proposed for signal transduction by the muscarinic acetylcholine and β-adrenergic receptors.

The nicotinic acetylcholine receptor was modelled with four trans-membrane helices per subunit and with the five homologous M2 helices forming the cation channel. Putative channel-lining residues were identified and a mechanism of channel-opening based upon the concerted, tangential rotation of the M2 helices was proposed.

Band 3, the anion exchange protein found in the erythrocyte membrane, was modelled with 14 transmembrane helices. In general the pathway of anion transport can be viewed as a channel composed of six helices that contains a single hydrophobic restriction. This hydrophobic region will not allow the passage of charged species, unless they are part of an ion-pair. An arginine residue located near this restriction is proposed to be responsible for anion transport. When ion-paired with a transportable anion it rotates across the barrier and releases the anion on the other side of the membrane. A similar process returns it to its original position. This proposed mechanism, based on the three-dimensional model, can account for the passive, electroneutral, anion exchange observed for band 3. Dianions can be transported through a similar mechanism with the additional participation of a histidine residue. Both residues are located on M10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The core-level energy shifts observed using X-ray photoelectron spectroscopy (XPS) have been used to determine the band bending at Si(111) surfaces terminated with Si-Br, Si-H, and Si-CH3 groups, respectively. The surface termination influenced the band bending, with the Si 2p3/2 binding energy affected more by the surface chemistry than by the dopant type. The highest binding energies were measured on Si(111)-Br (whose Fermi level was positioned near the conduction band at the surface), followed by Si(111)-H, followed by Si(111)-CH3 (whose Fermi level was positioned near mid-gap at the surface). Si(111)-CH3 surfaces exposed to Br2(g) yielded the lowest binding energies, with the Fermi level positioned between mid-gap and the valence band. The Fermi level position of Br2(g)-exposed Si(111)-CH3 was consistent with the presence of negatively charged bromine-containing ions on such surfaces. The binding energies of all of the species detected on the surface (C, O, Br) shifted with the band bending, illustrating the importance of isolating the effects of band bending when measuring chemical shifts on semiconductor surfaces. The influence of band bending was confirmed by surface photovoltage (SPV) measurements, which showed that the core levels shifted toward their flat-band values upon illumination. Where applicable, the contribution from the X-ray source to the SPV was isolated and quantified. Work functions were measured by ultraviolet photoelectron spectroscopy (UPS), allowing for calculation of the sign and magnitude of the surface dipole in such systems. The values of the surface dipoles were in good agreement with previous measurements as well as with electronegativity considerations. The binding energies of the adventitious carbon signals were affected by band bending as well as by the surface dipole. A model of band bending in which charged surface states are located exterior to the surface dipole is consistent with the XPS and UPS behavior of the chemically functionalized Si(111) surfaces investigated herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical transport properties and lattice spacings of simple cubic Te-Au, Te-Au-Fe, and Te-Au-Mn alloys, prepared by rapid quenching from the liquid state, hove been measured and correlated with a proposed bond structure. The variations of superconducting transition temperature, absolute thermoelectric power, and lattice spacing with Te concentration all showed related anomalies in the binary Te-Au alloys. The unusual behavior of these properties has been interpreted by using nearly free electron theory to predict the effect of the second Brillouin zone boundary on the area of the Fermi surface, and the electronic density of states. The behavior of the superconducting transition temperature and the lattice parameter as Fe and Mn ore added further supports the proposed interpretation as well as providing information on the existence of localized magnetic states in the ternary alloys. In addition, it was found that a very distinct bond structure effect on the transition temperatures of the Te-Au-Fe alloys could be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoelectric materials have demanded a significant amount of attention for their ability to convert waste heat directly to electricity with no moving parts. A resurgence in thermoelectrics research has led to significant enhancements in the thermoelectric figure of merit, zT, even for materials that were already well studied. This thesis approaches thermoelectric zT optimization by developing a detailed understanding of the electronic structure using a combination of electronic/thermoelectric properties, optical properties, and ab-initio computed electronic band structures. This is accomplished by applying these techniques to three important classes of thermoelectric materials: IV-VI materials (the lead chalcogenides), Half-Heusler’s (XNiSn where X=Zr, Ti, Hf), and CoSb3 skutterudites.

In the IV-VI materials (PbTe, PbSe, PbS) I present a shifting temperature-dependent optical absorption edge which correlates well to the computed ab-initio molecular dynamics result. Contrary to prior literature that suggests convergence of the primary and secondary bands at 400 K, I suggest a higher convergence temperature of 700, 900, and 1000 K for PbTe, PbSe, and PbS, respectively. This finding can help guide electronic properties modelling by providing a concrete value for the band gap and valence band offset as a function of temperature.

Another important thermoelectric material, ZrNiSn (half-Heusler), is analyzed for both its optical and electronic properties; transport properties indicate a largely different band gap depending on whether the material is doped n-type or p-type. By measuring and reporting the optical band gap value of 0.13 eV, I resolve the discrepancy in the gap calculated from electronic properties (maximum Seebeck and resistivity) by correlating these estimates to the electron-to-hole weighted mobility ratio, A, in narrow gap materials (A is found to be approximately 5.0 in ZrNiSn).

I also show that CoSb3 contains multiple conduction bands that contribute to the thermoelectric properties. These bands are also observed to shift towards each other with temperature, eventually reaching effective convergence for T>500 K. This implies that the electronic structure in CoSb3 is critically important (and possibly engineerable) with regards to its high thermoelectric figure of merit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.