69 resultados para 106-115 cm
Resumo:
研究表明 ,5~ 7年生沙棘林冠层可截留降水 8 5%~ 4 9 0 % ,并降低雨滴动能 ;枯枝落叶层重5 4 6t·hm- 2 ,其最大持水量可达 15 31t·hm- 2 ,有 1cm厚枯枝落叶层覆盖地表 ,即可基本控制水土流失 ;根系可以提高土壤的抗冲性和抗蚀性 ,与无根系土壤相比 ,可减少土壤冲刷量 55%~ 88% .据1988~ 1994年雨季径流小区测定 ,沙棘林在栽植后 4~ 5年可充分发挥水土保持作用 ,与农地相比 ,可减少地表径流量 87 1% ,减少土壤流失量 99 0 % .此外 ,它还可以每 4~ 5年提供薪材 10~ 30t·hm- 2 ,提高土壤中有机质和氮素含量 115%和 90 % ,生产沙棘果实 50 0kg·hm- 2 .所有这些表明了沙棘在治理黄土高原水土流失和改善人民生活条件 ,在实现由“恶性循环”向“良性循环”转变等方面 ,具有十分重要的作用 .目前 ,黄土地区已建立起若干利用沙棘固坡、防洪、解决燃料短缺和综合治理小流域的成功典型
Resumo:
In this work, both the thermal expansion and electrical conductivity of nanocrystalline La2Mo2O9 were studied. The nanocrystalline powder of La2Mo2O9 was obtained by sol-gel method, and with the help of SHP (superhigh pressure) up to 4.5 x 10(4) atm at 700 degrees C for a short time, and the nanocrystalline powder was densified without obvious particle size growth. The electrical conductivity of nanocrystalline La2Mo2O9 was one order of magnitude lower than that of the microcrystalline sample at the same temperature. Owing to the phase transition, the microcrystalline La2MO2O9 has an abrupt increase of thermal expansion with a peak value of 48 x 10(-6) K-1 at 556 degrees C. For the nanocrystalline material, the peak value increases to 112 x 10(-6) K-1 at 520 degrees C. On the other hand, above 600 degrees C the significant growth of particle size of the nanocrystalline La2Mo2O9 was observed, accompanying by a tremendous increase of thermal expansion with a peak value of 1565 x 10(-6) K-1 at 620 degrees C. The electrical conductivity of La1.6Nd0.4Mo2O9 at 800 degrees C is 0.14 S center dot cm(-1) which is about one third higher than that of La2Mo2O9.
Resumo:
The crystal of the title compound (C10H18N2O9SZn M-r=407.69) belongs to the hexagonal system, space group P 6(5) with cell parameters: a=11.411 (2), c=20.908(4) Angstrom, V=2357.7(7) Angstrom(3), Z=6, D-c=1.723g/cm(3), F(000)=1260, mu(MoKa)=1.743mm(-1). The final R and omega R factors are 0.072 and 0.178 respectively for 1335 observed reflections. in the structure, zinc ions are bridged by 4,4'-bipyridine to form infinite chains. The sheets containing parallel chains stack along a 65 screw axis to give a helical staircase motif. The helical structure is mainly controlled by the hydrogen bonds.
Resumo:
We report the measurement of 112 new high-lying odd-parity excited levels of U I in the energy region 35 678-36 696 cm(-1). These levels were obtained with a setup composed of a Nd:YAG-laser-pumped pulsed dye laser system, an atomic beam device, a time-of-flight mass spectrometer, and a boxcar integrator. (C) 2000 Optical Society of America [S0740-3224(99)02309-7] OCIS code: 300.0300.
Resumo:
The Ophiophagus hannah (King Cobra) neurotoxin CM-11 is a small protein with 72 amino acid residues, Based on complete assignments of H-1-NMR resonances and determination of secondary structures of CM-11, 349 distance and 27 dihedral angle constraints including 19 phi's and 8 chi's were collected from NOESY and DQF-COSY , and the chemical stereospecific assignment of beta(1)H was partially achieved, Twelve structures with lower energy was obtained via metric matrix distance geometry and refinement with simulated annealing, These structures have a low RMSD of 0.14 nm for backbone atoms and 0.20 nm for heavy atoms, with no distance constraint violation more than 0.05 nm, and no dihedral angle violation more than 3 degrees.
Resumo:
在完成了眼镜王蛇毒液抽提物CM-11的残基质子谱峰归属和二级结构的判定后,利用1H的NOESY谱和DQF-COSY谱选取了距离约束、测定了Φ角和χ1,并做了部分β1H的立体归属。利用度量矩阵距离几何法计算了其三维空间结构,并进行了结构的优化。同一个系列中挑选的12个低能分子结构中,骨架的RMSD为0.14nm,所有重原子的RMSD为0.20nm,所有的距离约束偏差不超过0.05nm,二面角的偏差不超过3°
Resumo:
2DNMR谱的自动归属是核磁共振发展的一个方向,CAPRI即是蛋白质1H谱的计算机辅助谱峰归属的一种程序。作者将其应用于眼镜王蛇神经毒素CM-111H谱的归属,讨论了CAPRI的功能和特点以及运用在CM-11后得到的分析结果。
Resumo:
The king cobra(Ophiophagus hannah) neurotoxin CM-11 is long-chain peptide with 72 amino acid residues. Its complete assignment of H-1-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.
Resumo:
The king cobra neuotoxin CM-11 is a small protein with 72 amino acid residues. After its complete assignments of H-1-NMR resonance's were obtained using various 2D-NMR technologies, including of DQF-COSY, clean-TOCSY AND NOESY, the secondary structure was analysed by studying the various NOEs extracted from the NOESY spectra and the distribution of chemical shifts. The secondary structure was finally determined by MCD as follows: a triple-strand antiparallel beta sheet with I20-W36, R37-A43 and V53--S59 as its beta strands, a short alpha helix formed by W30-G35 and four turns formed by P7-K10, C14-G17, K50-V53 and D61-N64.
Resumo:
The electrochemical behavior of Nd3+ and Ho3+ ions on molybdenum electrode in the LiCl-KCl eutectic melts has been studied by cyclic voltammetry and open-circuit potentiometry. The results show that the reduction process of Nd3+ and Ho3+ ions on molybdenum electrode is one-step three electron reversible reaction. The diffusion coefficients of Nd3+ and Ho3+ ions are 1.13 x 10(-6) cm(2).s(-1)(450 degrees C) and 2.142 x 10(-5) cm(2).s(-1)(450 degrees C), respectively. The measured standard electrode potential of Ho3+/Ho is 2.987 V(vs. Cl/Cl-), being more negative than the theoretical one, the reason of which is also discussed.
Resumo:
眼镜王蛇抽提物CM-11为含72个残基的长链神经毒素,对其进行了DQF-COSY,TOCSY和NOESY等一系列2D-NMR谱测定,借助序列专一归属法完成了CM-11NMR氢谱的完整归属。
Resumo:
眼镜王蛇毒液抽提物CM-11为含72个残基的长链神经毒素,对其进行了DQF-COSY,TOCSY和NOESY等一系列2D-NMR谱测定,通过系统地分析各种NOE信息、化学位移的分布等数据推测了蛋白质有规律二级结构,最后利用MCD主链引导法确定了它的二级结构。其中有三段反平行β折叠股(I20~W26、R37~A43和V53~S59)、一段α螺旋构象(W30~G35)和四个可能的转角(P7~K10,C14~G17,K50~V53,D61~N64),蛇毒神经毒素CM-11其他肽片段处在伸展构象。
Resumo:
A novel organotin complex, EtPhSnCl(2) . 2HOC(10)H(6)CH = NC6H1OCH3 was synthesized, and its crystal structure was determined by X-ray diffraction method. The crystal is triclinic, belonging to space group,
with unit cell parameters a = 1.150 8(5) nm, b = 1. 153 1(5) gm, c = 1. 004 6 (3) nm, alpha = 94. 15 (3)degrees, beta = 115.47 (3)degrees, r = 85. 94 (4)degrees, V = 1199 7(1) nm(3), Z=2, D-c=1.68 g/cm(3), mu=13. 20 cm(-1), F(000)=618 for 4 131 reflections tions. R=0. 047, R(w)=0. 047. The ligand coordinates to tin atom via phenolic oxygen atom. The complex has a distored trigonal bipyramidal structure, the phenolic oxygen atom of the ligand and one of two chlorine atoms occupy the axial position. The distance between noncoodinated nitrogen atom with phenolic oxygen atom is 0. 257 4 nm, which indicates that the intramolecular hydrogen bond of Schiff base ligand is retained in the complex.
Resumo:
The title complex was prepared by reacting Yb(NO3)3 (12-crown-4) with 1, 10-phenanthiroline (hereafter phen) in acetone. It crystallized in the triclinic space group P1BAR with a = 10.095(5), b = 17.415(4), c = 8.710(2) angstrom; alpha = 92.45(2), beta = 115.83(3), gamma = 74.08(3)degrees and D(c), = 1.85 g cm-3; Z = 2. The metal ion in this complex is nine-coordinated to three bidentate nitrate ions, two nitrogen atoms of a phen and a water molecule. The crown ligand is hydrogen bonded to the coordination water molecule. The symmetry change of the crown ether is also discussed.
HOST-GUEST INTERACTIONS OF THIAMINE WITH ANIONS - CRYSTAL-STRUCTURE OF THIAMINE IODIDE SESQUIHYDRATE
Resumo:
The crystal structure of thiamine iodide sesquihydrate has been determined by X-ray diffraction methods as a host-guest model for coenzyme-substrate interactions. The asymmetric unit contains two chemical units. Both the thiamine molecules A and B, which are crystallographically independent, assume the usual F conformation and have a disordered hydroxyethyl side chain. An iodide anion (or a water molecule) bridges the pyrimidine and thiazolium rings of molecule A (or B) by forming a hydrogen bond with the amino group and an electrostatic contact with the thiazolium ring to stabilize the molecular conformation. In the crystal the thiamine molecules self-associate to form a pipe-like polymeric structure, in which four thiamine hosts surround an iodide guest and hold it through C(2)-H...I hydrogen bonds and thiazolium...I electrostatic interactions. Crystal data: C12H17N4OS+.I- . 1.5 H2O, monoclinic, P2(1)/c, a = 12.585(2), b = 25.303(5), c = 12.030(2) angstrom, beta = 115.15(1)degrees, V = 3468(1) angtrom3, Z = 8, D(c) = 1.606 g cm-3, R = 0.045 for 3328 observed reflections.