583 resultados para self-organized quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fascinating features of porous InP array-directed assembly of InAs nanostructures are presented. Strained InAs nanostructures are grown by molecular-beam epitaxy on electrochemical etched porous InP substrate. Identical porous substrate with different pore depths defines different growth modes. Shallow pores direct the formation of closely spaced InAs dots at the bottom. Deep pores lead to progressive covering of the internal surface of pores by epitaxial material followed by pore mouth shrinking. For any depth an obvious dot depletion feature occurs on top of the pore framework. This growth method presages a pathway to engineer quantum-dot molecules and other nanoelements for fancy physical phenomena. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetophotoluminescence properties of Zn0.88Mn0.12Se thin films grown by metal-organic chemical vapor deposition on GaAs substrates are investigated in fields up to 10 T. The linewidth of the excitonic luminescence peaks decreases with the increasing magnetic field (< 1 T), but the peak energy is almost unchanged. There is a crossover of the photoluminescence intensities between interband and bound excitonic transitions as the magnetic field is increased to about 1 T. These behaviors are interpreted by the strong tuning of the local alloy disorder potential by the applied magnetic field. In addition, the magnetic field-induced suppression of the energy transfers from excitons to Mn2+ ions is also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the two samples of AIInGaN, i.e., 1-mum GaN grown at 1030degreesC on the buffer and followed by a 0.6-mum-thick epilayer of AIInGaN under the low pressure of 76 Torr and the AIInGaN layer deposited directly on the buffer layer without the high-temperature GaN layer, by temperature-dependent photoluminescence (PL) spectroscopy and picosecond time-resolved photoluminescence (TRPL) spectroscopy. The TRPL signals of both the samples were fitted well as a stretched exponential decay at all temperatures, indicating significant disorder in the material. We attribute the disorder to nanoscale quantum dots or discs of high indium concentration. Temperature dependence of dispersive exponent beta shows that the stretched exponential decay of the two samples comes from different mechanisms. The different depths of the localization potential account for the difference, which is illustrated by the results of temperature dependence of radiative recombination lifetime and PL peak energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved PL (TRPL) at various temperatures. The fast red-shift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(-t/,tau)13], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed QDs or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent beta on temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered QDs. Furthermore, the localized states are found to have 0D density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GaSb and Ga0.62In0.38Sb nanocrystals were embedded in the SiO2 films by radio-frequency magnetron co-sputtering and were grown on GaSb and Si substrates at different temperatures. We present results on the 10K excitonic photoluminescence (PL) properties of nanocrystalline GaSb and Ga0.62In0.38Sb as a function of their size. The measurements show that the PL of the GaSb and Ga0.62In0.38Sb nanocrystallites follows the quantum confinement model very closely. By using deconvolution of PL spectra, origins of structures in PL were identified. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature-dependent photoluminescence measurements have been carried out in zinc-blende InGaN epilayers grown on GaAs substrates by metalorganic vapor-phase epitaxy. An anomalous temperature dependence of the peak position of the luminescence band was observed. Considering thermal activation and the transfer of excitons localized at different potential minima, we employed a model to explain the observed behavior. A good agreement between the theory and the experiment is achieved. At high temperatures, the model can be approximated to the band-tail-state emission model proposed by Eliseev et al. [Appl. Phys. Lett. 71, 569 (1997)]. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By analysing the carrier dynamics based on the rate equations and the change of the refractive index due to the efficient carrier capture, we have calculated the carrier capture process in the InAs/GaAs system detected by a simple degenerate pump-probe technique. The calculated results are found to be in good agreement with the experimental findings. Our results indicate that this simple technique, with the clear advantage of being easy to carry out, can be very useful in studying the carrier dynamics for some specific structures such as InAs ultrathin layers embedded in a GaAs matrix described here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical spectra of CdSe nanocrystals are measured at room temperature under pressure ranging from 0 to 5.2 GPa. The exciton energies shift linearly with pressure below 5.2 GPa. The pressure coefficient is 27 meV GPa(-1) for small CdSe nanocrystals with the radius of 2.4 nm. With the approximation of a rigid-atomic pseudopotential, the pressure coefficients of the energy band are calculated. By using the hole effective-mass Hamiltonian for the semiconductors with wurtzite structure under various pressures, we study the exciton states and optical spectra for CdSe nanocrystals under hydrostatic pressure in detail. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbit coupling on the hole states are investigated. The Coulomb interaction of the exciton states is also taken into account. It is found that the theoretical results are in good agreement with the experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the hole levels and exciton states in CdS nanocrystals by using the hole effective-mass Hamiltonian for wurtzite structure. It is found that the optically passive P-x state will become the ground hole state for small CdS quantum dots of radius less than 69 Angstrom. It suggests that the "dark exciton" would be more easily observed in the CdS quantum dots than that in CdSe quantum dots. The size dependence of the resonant Stokes shift is predicted for CdS quantum dots. Including the Coulomb interaction, exciton energies as functions of the dot radius are calculated and compared with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid carrier capture and relaxation processes in InAs/GaAs quantum dots were studied at 77K by using a simple degenerate pump-probe technique. A rising process was observed in the transient reflectivity, following the initial fast relaxation associated with GaAs bulk matrix, and this rising process was assigned to be related to the carrier capture from the GaAs barriers to InAs layers. The assignment was modeled using Kramers-Kronig relation. By analyzing the rising process observed in the transient reflectivity, the carrier capture time constants were obtained. The measured capture times decrease with the increase of carrier concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a review of research and development on semiconductor materials, which covers main scientific activities in this field. The present status acid future prospects of studies on semiconductor materials, such as silicon crystals, GaAs related III-V compound semiconductor materials and GaAs, InP and silicon based quantum well and superlattice materials, quantum wires and quantum dots materials, microcavity and photonic crystals, materials for quantum computation and wide band gap materials, are briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.