522 resultados para Vapor deposition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

series of a donor-acceptor-donor type of near-infrared (NIR) fluorescent chromophores based on [1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) as an electron acceptor and triphenylamine as an electron donor are synthesized and characterized. By introducing pendent phenyl groups or changing the pi-conjugation length in the TQ core, we tuned tile energy levels of these chromophores, resulting in the NIR emission in a range from 784 to 868 nm. High thermal stability and glass transition temperatures allow these chromophores to be used as dopant emitters, which can be processed by vapor deposition for the fabrication of organic light-emitting diodes (OLEDs) having the multilayered structure of ITO/MoO3/NPB/Alq(3):dopant emitter/BCP/Alq(3)/LiF/Al. The electroluminescence spectra of the devices based on these new chromophores cover a range from 748 to 870 nm. With 2 wt % of dopant 1, the LED device shows an exclusive NIR emission at 752 nm with the external quantum efficiency (EQE) as high as 1.12% over a wide range of current density (e.g., around 200 mA cm(-2)).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superhydrophobic cellulose-based materials coupled with transparent, stable and nanoscale polymethylsiloxane coating have been successfully achieved by a simple process via chemical vapor deposition, followed by hydrolyzation and polymerization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk material and coatings of Lanthanum-Cerium Oxide (La2Ce2O7) with a fluorite structure were studied as a candidate material for thermal barrier coating (TBC). It has been showed that such material has the properties of low thermal conductivity about four times lower than YSZ, the difference in the thermal expansion coefficient between La2Ce2O7 and bond coat is smaller than that of YSZ in TBC systems, high phase stability between room temperature and 1673 K, about 300 K higher than that of the YSZ. The coating prepared by electron beam physical vapor deposition (EB-PVD) showed that it has good thermal cycling behavior, implying that Such material can be a promising thermal barrier coating material. The deviation of coating composition from ingot can be overcome by the addition of excess La2O3 during ingot preparation and/or by adjusting the process parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel solution-phase method for the preparation of Au@ZnO core-shell composites was described. With this method, the composites were grown without heating that is usually needed in other solution methods. Atomic force microscopy (AFM) results show that the diameter of Au@ZnO core-shell composites is about 10.5 nm. X-ray photoelectron spectroscopy (XPS) was applied to characterize Au@ZnO core-shell composites. The optical properties of Au@ZnO core-shell composites, including UV-vis absorption and photo luminescence (PL), were observed at room temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The triplet energy state of the HTH [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl) hexane-1,3-dione] ligand was measured to be 20 400 cm(-1), which indicated that Sm(HTH)(3) phen (phen: 1,10-phenanthroline) is a good complex to produce strong PL intensity and high fluorescence yield. Electroluminescent (EL) devices using the Sm( HTH) 3 phen complex as the emissive center were fabricated by vapor deposition and spin-coating methods. The relative intensity of the EL spectra changed compared to the photoluminescence (PL) spectrum, which suggested that the luminescence mechanisms of PL and EL have differences. A luminance of 9 cd m(-2) and a higher brightness of 21 cd m(-2) were obtained from the devices ITO/TPD (40 nm)/ Sm( HTH)(3) phen (50 nm)/ PBD (30 nm)/ Al (200 nm) and ITO/PVK (40 nm)/ PVK : Sm( HTH)(3) phen (2.5 wt%, 50 nm)/ PBD (30 nm)/ Al (200 nm), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The partial oxidation of methane with molecular oxygen was performed on Fe-Mo/SiO2 catalysts. Iron was loaded on the Mo/SiO2 catalyst by chemical vapor deposition of Fe-3(CO)(12). The catalyst showed good low-temperature activities at 723-823 K. Formaldehyde was a major condensable liquid product on the prepared catalyst. There were synergistic effects between iron and molybdenum in Fe-Mo/SiO2 catalysts for the production of formaldehyde from the methane partial oxidation. The activation energy of Mo/SiO2 decreased with the addition of iron and approached that of the Fe/SiO2. The concentration of isolated molybdenum species (the peak at 1148 K in TPR experiments) decreased as the ion concentration increased and had a linear relationship with the selectivity of methane to formaldehyde. The role of Fe and Mo in the Fe-Mo/SiO2 catalyst was proposed: Fe is the center for the C-H activation to generate reaction intermediates, and Mo is the one for the transformation of intermediates into formaldehyde. Those phenomena were predominant below 775 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 nanoparticle film catalysts with different thicknesses were prepared by plasma-enhanced chemical vapor deposition(PECVD) method and the surfaces were subsequently treated by TiCl4 or O-2 plasma. Two kinds of TiO2 films with different surface properties were obtained. Their surface microstructures and energy levels of surface states were tested by AFM, XRD, SPS, The photocatalytic activities of the catalysts were determined via photodegradation experiments of phenol. The results demonstrated that photocatalytic activities of samples whose surface was treated by O-2 plasma were greater than those treated by TiCl4 plasma. Moreover, photodegradation ratio of phenol during the first hour catalyzed by 0. 17 mu m thickness TiO2 nanoparticle film was greater than other samples. Especially, the difference of photocatalytic activities of TiO2 nanoparticle films treated by TiCl4 or O-2 plasma was respectively explained by energy band theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An interesting interface structure between diamond film and silicon substrate has been observed. That is, according to the deformation of the diamond film crystal sturcture, a strictly 3:2 matching of the two lattices across the interface is obtained. This result clearly indicates that misfit dislocations at the interface and "epitaxial tilting" are not the only two ways to overcome the 1.5% residual misfit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

碳纳米管的小直径、高纵横比、高强度和高弹性、优良的耐磨损性能以及独特的电学和化学特性,使其成为高分辨率原子力显微镜的理想探针针尖。本文根据制作工艺的特点,综述现有碳纳米管探针的代表性研究和制作方法:组装式和生长式。组装式是通过手工、电场或磁场的方式将制备好的碳纳米管粘附到常规硅探针的末端;而生长式是在常规硅探针末端或悬臂梁上定点催化生长出一定直径和长度的CNT。最后指出这些方法目前存在的主要问题。