471 resultados para Exciton emission
Resumo:
The criterion on 4f~7(~6P_J)→4f~7 (~8S_(7/2))(i. e. f→f)transition emission of Eu~(2+) ions was established based on chemical band properties and crystal field effects. By means of the criterion, we have predioted, designed and synthesized 40 Eu~(2+)-doped complex fluorides. The sharp emissions of f→f transition of Eu~(2+) ions were observed in these doped compounds. The condition for applying this criterion is briefly discussed.
Resumo:
I. TNTRODUCTIONThe emission spectroscopic method is usually used to measure spontaneous emission branching ratios. As emission spectra cannot be detected in atomic beams, the laser-induced fluorescence or ion detection method is often used. When the fluorescence method is used to measure branching ratios, it is usually necessary to detect
Resumo:
In most cases the luminescence of Eu~(2+) consists of a d-f broad-band emission, in some particular hosts, however, Eu~(2+) can also give out f-f narrow-line emission. There are two factors of importance here: the first is the strength of the crystal-field
Resumo:
The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.
Resumo:
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.
Resumo:
In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.