452 resultados para nano-ZnO


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel stress-strain relation with two stages of linear elastic deformation is observed in [0 0 0 1]-oriented ZnO nanorods under uniaxial tensile loading. This phenomenon results from a phase transformation from wurtzite (WZ, P6(3)mc space group) to a body-centered tetragonal structure with four-atom rings (denoted as BCT-4) belonging to the P4(2)/mnm space group. The analysis here focuses on the effects of nanorod size and temperature on the phase transformation and the associated mechanical behavior. It is found that as size is increased from 19.5 to 45.5 angstrom, the critical stress for nucleation of the transformation decreases by 25% from 21.90 to 16.50 GPa and the elastic moduli of the WZ- and BCT-4-structured nanorods decrease by 24% (from 299.49 to 227.51 GPa) and 38% (from 269.29 to 166.86 GPa), respectively. A significant temperature effect is also observed, with the critical stress for transformation initiation decreasing 87.8% from 17.89 to 2.19 GPa as temperature increases from 300 to 1500 K. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular zinc oxide (ZnO) tetrapods with a flat plane have been obtained on Si(1 0 0) substrate via the chemical vapour deposition approach. The x-ray diffraction result suggests that these tetrapods are all single crystals with a wurtzite structure that grow along the (0 0 0 1) direction and corresponding electron backscatter diffraction analysis reveals the crystal orientation of growth and exposed surface. Furthermore, we find some ZnO tetrapods with some legs off and the angles between every two legs are measured with the aid of scanning electron microscopy and image analysis, which benefit to reveal the structure of ZnO tetrapods joint. The structure model and growth mechanism of ZnO tetrapods are proposed. Besides, the stable model of the interface was obtained through the density-functional theory calculation and the energy needed to break the twin plane junction was calculated as 5.651 J m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the indenter shapes and various parameters on the magnitude of the capillary force is studied on the basis of models describing the wet adhesion of indenters and substrates joined by liquid bridges. In the former, we consider several shapes, such as conical, spherical and truncated conical one with a spherical end. In the latter, the effects of the contact angle, the radius of the wetting circle, the volume of the liquid bridge, the environmental humidity, the gap between the indenter and the substrate, the conical angle, the radius of the spherical indenter, the opening angle of the spherical end in the truncated conical indenter are included. The meniscus of the bridge is described using a circular approximation, which is reasonable under some conditions. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. The results can be applicable to the micro- and nano-indentation experiments. It shows that the measured hardness is underestimated due to the effect of the capillary force. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在由溶胶-凝胶法制备的纳米ZnO薄膜衬底上,以Zn(NO_3)_2·6H_2O和六亚甲基四胺(HMT)等摩尔浓度配制成前驱体溶液,在单层聚苯乙烯(PS)微球模板辅助下,采用水热法制备了具有规则多孔结构的ZnO薄膜.探讨了PS微球作为模板对ZnO纳米棒生长的限制作用以及柠檬酸钠在水热制备方法中对晶体生长的影响.利用扫描电子显微镜(SEM)和X射线衍射(XRD)表征了水热反应后所得二维有序ZnO膜表面形貌和取向性,测量了ZnO薄膜的光致发光(PL)光谱并研究其相应机理.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

纳米氧化锌(ZnO)是一种直接宽带隙半导体材料,室温下其禁带隙宽为本3.37 eV,激子束缚能为60 meV。纳米ZnO有明显的尺寸效应、表面和界面效应等,物理化学性能优越。在压电材料、铁电材料、平面显示、表面声波、传感器、场发射器件、激光、光催化等方面有着广泛的用途。近年来,对纳米ZnO材料的研究成为国内外的一个热点。 本论文研究了用化学气相沉积(CVD)法制备微/纳米ZnO材料。通过控制实验条件,合成了多种特殊结构和形貌的微/纳米ZnO材料,并用扫描电子显微镜(SEM)、高分辨率透射电镜(HR-TEM)、X-射线衍射仪(XRD)、Raman光谱和光致发光(PL)等对材料的结构和光学性能进行了表征。采用CVD法,在温度为630 °C,氧气流量为15 sccm,氩气流量为300 sccm的条件下,制备了一种纳米带冠四足状ZnO(T-ZnO)。此结构ZnO材料的每根足顶端均有一规则的六方帽形结构,具有很大的比表面积。实验结果表明:合成的ZnO材料为纤维锌矿结构单晶,并且沿着(0001)方向生长;室温下的PL谱有两个激发峰,一个是在393 nm处相对较弱的近带紫外峰,另一个是在511 nm处强峰。而材料在600 °C下氧气中退火30 min后,511 nm附近的绿光激发辐射峰则基本消失了,这说明在511 nm处的绿光激发辐射峰可能是由于氧空位引起的。此外,通过改变实验条件,还得到了其他多种结构的微/纳米ZnO材料。 通过大量实验,找到了一种在低温下合成微/纳米ZnO材料的新方法,即水蒸气氧化法。用ZnI2作为锌源,水蒸气作为氧化剂,实验温度在300~500 °C范围内,大大低于通常CVD法的500~1500 °C。采用此法,用硅做基底,得到了一系列有趣的实验结果,大多数情况下ZnO纳米晶自组装成很规则的圆。而在瓷舟中收集到的纳米ZnO跟普通CVD法结果相似,可以得到锥状、棒状等结构的纳米晶,但其生长方式与硅基底上的有很大差别。此外,用水蒸气氧化法,还实现了ZnO纳米晶在碳纳米管(CNTs)上的直接生长,而且其PL性能增强,这可能是纳米ZnO和CNTs相互耦合的结果。在700 °C温度下,以锌粉和ZnI2作为锌源,用水蒸气作为氧化剂,在硅基底的正反面分别得到了纳米棒和纳米推子阵列。此外,还对水蒸气氧化法的化学反应机理进行了分析,实验结果证明:固态ZnI2在受热和一定真空度下先蒸发成ZnI2分子,ZnI2分子遇到水蒸气发生反应生成偶极ZnO分子,这些ZnO偶极分子在硅基底上通过静电力自组装成特殊的几何形状。 此外,还通过分子动力学模拟的方法,对材料的力学性能进行了研究,得到了ZnO的弹性常数和体弹性模量,模拟值跟其他研究人员的实验和模拟结果吻合得很好,并估出算了ZnO晶体的表面能和断裂韧性。 本论文还对制备材料的光催化性能进行了系统的研究,采用CVD法制备ZnO,对铬黑T(EBT)进行光催化降解实验。通过正交实验方法,得到了ZnO催化降解EBT的最佳工艺条件,即催化剂用量为5 g/L,光照强度为120 W,反应温度为20 °C,反应时间为120 min,EBT浓度为10 mg/L,溶液pH值为4。 在最佳实验条件下,20分钟内有95%的EBT被降解完,30分钟内则全部降解。因此,ZnO在EBT的降解中催化效率很高,在废水处理中具有潜在的应用前景。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations were employed to explore the gas-sensing mechanisms of zinc oxide (ZnO) with surface reconstruction taken into consideration. Mix-terminated (10 (1) over bar0) ZnO surfaces were examined. By simulating the adsorption process of various gases, i.e., H-2, NH3, CO, and ethanol (C2H5OH) gases, on the ZnO (10 (1) over bar0) surface, the changes of configuration and electronic structure were compared. Based on these calculations, two gas-sensing mechanisms were proposed and revealed that both surface reconstruction and charge transfer result in a change of electronic conductance of ZnO. Also, the calculations were compared with existing experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural variation near surface of nano elastic materials is analyzed based on different potentials. The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions (attractive or repulsive) in the atomic/molecular potentials essentially governs the variation near surface (looser or tighter) and results in two opposite size effects (decreasing or increasing modulus) with decreasing size.