339 resultados para laser diode arrays
Resumo:
A 1.3-mu m AlGaInAs/InP buried heterostructure (BH) stripe distributed feedback laser with a novel AlInAs/InP complex-coupled grating grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) is proposed and demonstrated. A high characteristic temperature (T-0 = 90K between 20-80 degrees C) and temperature-insensitive slope efficiency (0.25 dB drop from 20 to 80 degrees C) in 1.3 mu m AlGaInAs/InP DFB lasers was obtained by introducing AI(Ga)InAs graded-index separate-confinement heterostructure (GRINSCH) layers and a strained-compensated (SC) multi-quantum well (MQW).
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is introduced in this paper. The intrinsic small-signal response can be directly extracted from the measured transmission coefficients of laser diode by the method. However the chip temperature may change with the injection bias current due to thermal effects, which causes inaccurate intrinsic response by our method. Therefore, how to determine the chip temperature and keep the laser chip adiabatic is very critical when extracting the intrinsic response. To tackle these problems, the dependence of the lasing wavelength of the laser diode on the chip temperature is investigated, and an applicable measurement setup which keeps the chip temperature stable is presented. The scattering parameters of laser diode are measured on diabatic and adiabatic conditions, and the extracted intrinsic responses for both conditions are compared. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis indicates that inclusion of thermal effects is necessary to acquire accurate intrinsic response.
Resumo:
We solve the single mode coupled rate equations by computer, simulate the behavior of a gain switch of an AlGalnP red light semiconductor laser diode, and find the characteristic of FWHM of pulses changing with the amplitude of modulation signal, the bias current, and the modulated frequency. On this basis, we conduct experiments. The experiment results accord with the simulations well.
Resumo:
The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.
Resumo:
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dualwaveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB. These devices exhibit a 3dB modulation bandwidth of 15. 0GHz, and modulator DC extinction ratios of 16.2dB. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7. 3°× 18. 0°,respectively, resulting in a 3. 0dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A cladding-pumped ytterbium-doped fiber laser is described in this letter. Using unusual pumping source with 915-nm wavelength, slope efficiency up to 75% with respect to absorbed input power and output power is obtained, a maximum output power of 4.006 W with fundamental mode is measured.
Resumo:
A novel AIN monolithic microchannel cooled heatsink for high power laser diode array is introduced.The high power stack laser diode array with an AIN monolithic microchannel heatsink is fabricated and tested.The thermal impedance of a 10 stack laser diode array is 0.121℃/W.The pitch between two adjacent bars is 1.17mm.The power level of 611W is achieved under the 20% duty factor condition at an emission wavelength around 808nm.
Resumo:
A novel 1.55μm laser diode with spot-size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double-core structure is employed.For the spot-size converter,a buried ridge double-core structure is incorporated.The laterally tapered active core is designed and optically combined with the thin and wide passive core to control the size of mode.The laser diode threshold current is measured to be 40mA together with high slop efficiency of 0.35W/A.The beam divergence angles in the horizontal and vertical directions are as small as 14.89°×18.18°,respectively,resulting in low-coupling losses with a cleaved optical fiber (3dB loss).
Resumo:
In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.
Resumo:
Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 ptm diameter. The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 fxm aperture spaced on 500 (xm centers. The coupling system contains packaged laser diode bar, fast axis collimator, slow axis collimation array, beam transformation system and focusing system. The high brightness, high power density and single fiber output of a laser diode bar is achieved. The coupling efficiency is 65% and the power density is up to 1.03 * 10~4 W/cm~2.
Resumo:
An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated. The effects of test jig parasites can be completely removed in the measurement by a new calibration method. In theory, the measuring range of the measurement system is only determined by the measuring range of the instruments network analyzer and photo detector. Diodes' bandwidth of 7.5GHz and 10GHz is measured. The results reveal that the method is feasible and comparing with other method, it is more precise andeasier to use.
Resumo:
A piece of multimode optical fiber with a low numerical aperture (NA) is used as an inexpensive microlens to collimate the output radiation of a laser diode bar in the high numerical aperture (NA) direction. The emissions of the laser diode bar are coupled into multimode fiber array. The radiation from individual ones of emitter regions is optically coupled into individual ones of fiber array. Total coupling efficiency and fiber output power are 75% and 15W, respectively.
Resumo:
The characteristics of thickness enhancement factor and bandgap wavelength of selectively grown In-GaAsP are investigated. A high thickness enhancement factor of 2.9 is obtained. Spotsize converter integrated DFB lasers are fabricated by using the technique of SAG. The threshold current is as low as 10.8mA. The output power is 10m W at 60mA without coating and the SMSR is 35.8dB. The vertical far field angle (FWHM) is decreased from 34 °to 9 °. The tolerance of 1dBm misalignment is 3.4μm vertically.