104 resultados para isochronous cyclotron
Resumo:
本论文详细地介绍了直边分离扇等时性回旋加速器的理论。结合兰州重离子加速器系统的主加速器SSC,介绍了这种加速器的等时场建立及优化的方法。编写了相关的计算程序。分析并解决了长期以来SSC在注入区附近运行调束十分困难的问题。最后进行了等时场优化的实验。第一章概述性地介绍了兰州重离子加速器装置HIRFL和SSC的注入引出系统、磁场系统及高频系统。第二章作为分析分离扇等时性回旋加速器束流轨道动力学的基础知识,介绍了具有周期磁场结构加速器的基本理论。第三章根据分离扇等时性回旋加速器的磁场周期结构还具有反射对称性特点,分析了传输矩阵元关于磁场周期结构对称点的对称性质。在此基础上讨论了束流的包络和散角沿平衡轨道的分布形态及计算方法。讨论了共振线对这种加速器的磁场结构和能量范围的限制。并计算了SSC加速质子的能量上限。第四章介绍用Kb-Kr方法建立SSC理论等时场的过程。给出了计算平衡轨道和Kb、Kr参数及扇中心线上理论等时场的方法,编写了相应的计算程序。详细地介绍了根据线圈效率和扇中心线上的理论等时场面计算SSC各线圈电流值的一种方法,根据这个方法编写了计算SSC各线圈电流值的程序。提高了SSC预置电流的准确度和自动化的程度。为等时场面优化工作做了必要的准备。分析并找出了长期以来SSC在注入区附近运行调束十分困难、花费时间长的原因。采取了解决的方法。经过一年多的运行实践证明,所采用的方法极大地提高了SSC在注入区附近运行调束的效率。最后介绍了SSC等时场优化的原理和方法并做了SSC等时场优化的实验。
Resumo:
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.
Resumo:
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mm NH4+ (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase.
Resumo:
Paeoniflorin standard was first investigated by electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) using a sustained off-resonance irradiation (SORI) collision-induced dissociation (CID) method at high mass resolution. The experimental results demonstrated that the unambiguous elemental composition of product ions can be obtained at high mass resolution. Comparing MS/MS spectra and the experimental methods of hydrogen and deuterium exchange, the logical fragmentation pathways of paeoniflorin have been proposed. Then, the extracts of the traditional Chinese medicine Paeonia lactiflora Pall. were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). By comparison with the ESI-FTICR-MS/MS data of paeoniflorin, the isomers paeoniflorin and albiflorin in Paeonia lactiflora Pall. have been identified using HPLC/MS with CID in an ion trap and in-source CID. Furthermore, using the characteristic fragmentation pathways, the retention times (t(R)) in HPLC and MS/MS spectra, the structures of three other kinds of monoterpene glycoside compounds have been identified on-line without time-consuming isolation.
Resumo:
High-resolution Sustained off resonance irradiation (SORI) CID was employed to distinguish four pairs of isomeric diglycosyl flavonoids in the negative mode using the electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). All of these isomers can be distinguished via MS/MS data. For these diglycosyl flavones and flavanones, the deprotonated alpha 1-->6 linkage diglycosyl flavonoids produce fewer fragments than the alpha 1-->2 linkage type compounds and the Retro-Diels-Alder (RDA) reaction in MS/MS only takes place when the aglycone is a flavanone and glycosylated with an alpha 1-->2 intersaccharide linkage disaccharide. The deprotonation sites after collisional activation are discussed according to the high mass accuracy and high-resolution data of tandem spectrometry. Some of these high-resolution SORI CID product ions from alpha 1-->2 linkage diglycosyl flavonoids involve multibond cleavages; the possible mechanism is discussed based on the computer modeling using Gaussian 03 program package at the B3LYP/6-31G level of theory. Unambiguous elementary composition data provides fragmentation information that has not been reported previously.
Resumo:
The fragmentations of four strychnos alkaloids have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the positive ion mode. Experiments using multi-stage tandem mass spectrometry (ESI-FT-ICR-MSn) allowed us to obtain precise elemental compositions of product ions at high mass resolution. The experimental data demonstrated that the nitrogen bridge and the coordinated oxygen atom on the nitrogen bridge in the alkaloid compounds were the active sites in the MS2 fragmentations. The loss of CH3 or the OCH3 group in those alkaloids, which have an OCH3 substituent, was the dominant fragmentation mode in the MS3 fragmentations. Logical fragmentation schemes for strychnos alkaloids have been proposed and these should be useful for the identification of these compounds.
Resumo:
A time averaged two-dimensional fluid model including an electromagnetic module with self-consistent power deposition was developed to simulate the transport of a low pressure radio frequency inductively coupled plasma source. Comparsions with experiment and previous simulation results show, that the fluid model is feasible in a certain range of gas pressure. In addition, the effects of gas pressure and power input have been discussed.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.
Resumo:
The magnetic field dependence of filling factors has been investigated on InP based In-0.53 Ga0.47As/In-0.52 Al-0.48 As quantum well samples with two occupied subbands by means of magnetotransport measurements at the temperature of 1.5 K in a magnetic field range of 0 to 13 T. Under the condiction that Laundau-level broadening is larger than the spin splitting of each subband, filling factors are even when the splitting energy of two subbands is an integer multiple of the cyclotron energy, i. e. Delta E-21 = khw(c). If the splitting energy of two subbands is half of an odd interger multiple of the cyclotron erergy, i. e. Delta E-21 = (2 k + 1) hw(c) /2, the filling factor is odd.
Resumo:
The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.
Resumo:
We investigate the Rashba spin-orbit coupling brought by transverse electric field in InSb nanowires. In small k(z) (k(z) is the wave vector along the wire direction) range, the Rashba spin-orbit splitting energy has a linear relationship with k(z), so we can define a Rashba coefficient similarly to the quantum well case. We deduce some empirical formulas of the spin-orbit splitting energy and Rashba coefficient, and compare them with the effective-mass calculating results. It is interesting to find that the Rashba spin-orbit splitting energy decreases as k(z) increases when k(z) is large due to the k(z)-quadratic term in the band energy. The Rashba coefficient increases with increasing electric field, and shows a saturating trend when the electric field is large. As the radius increases, the Rashba coefficient increases at first, then decreases. The effects of magnetic fields along different directions are discussed. The case where the magnetic field is along the wire direction or the electric field direction are similar. The spin state in an energy band changes smoothly as k(z) changes. The case where the magnetic field is perpendicular to the wire direction and the electric field direction is quite different from the above two cases, the k(z)-positive and negative parts of the energy bands are not symmetrical, and the energy bands with different spins cross at a k(z)-nonzero point, where the spin splitting energy and the effective g factor are zero.
Resumo:
Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).
Resumo:
To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.