64 resultados para electron-phonon interactions
Resumo:
The magnetophonon resonance effect in the energy relaxation rate is studied theoretically for a quasi-two-dimensional electron gas in a semiconductor quantum well. An electron-temperature model is adopted to describe the coupled electron-phonon system. The energy relaxation time, derived from the energy relaxation rate, is found to display an oscillatory behavior as the magnetic-field strength changes, and reaches minima when the optical phonon frequency equals integer multiples of the electron cyclotron frequency. The theoretical results are compared with a recent experiment, and a qualitative agreement is found.
Resumo:
The excitation spectrum of CdS dusters in zeolite-Y is consistent with their absorption spectrum, both showing two absorption bands that are assigned to the Is-is and Is-lp transitions, respectively. A new emission at 400 nn is considered to be the recombination of the bounded excitons. The emission firstly increases then decreases with increasing cluster size or loading. The emission by excitation into the Is-is band is stronger and sharper than that by excitation into the Is-lp band. This phenomenon is attributed to the size inhomogeneity and the strong electron-phonon interaction of the dusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The LO phonon modes in the barrier layers of a GaInAs/AlInAs multiple quantum well structure are investigated by resonance Raman scattering (RRS), the excitation laser photon energy tuned to resonate with the above barrier interband transition energy. The resonance enhancement of LO phonon peaks are shown to be caused by Frohlich electron-phonon interaction. The pressure-dependent profiles for both AlAs-like (LO(2) mode) and InAs-like (LO(1) mode) Raman peak intensities are well fitted by the Gaussian lineshape. The shift between these two profiles can be explained by the outgoing RRS mechanism, providing information on the pressure-induced shift of the excitonic transition energy. The amplitude ratios of the two profiles are close to 1, showing a well defined two-mode behavior and the nearly equal polarizability for Al-As and In-As bonds in AlInAs alloy.
Resumo:
The commissioning of the cooler storage rings (CSR) was successful, and the facility provides new possibilities for atomic physics with highly charged ions. Bare carbon, argon ions, were successfully stored in the main ring CSRm, cooled by cold electron beam, and accelerated up to 1 GeV/u. Heavier ions as Xe44+ and Kr28+ were also successfully stored in the CSRs. Both of the rings are equipped with new generation of electron coolers which can provide different electron beam density distributions. Electron-ion interactions, high precision X-ray spectroscopy, complete kinematical measurements for relativistic ion-atom collisions will be performed at CSRs. Laser cooling of heavy ions are planned as well. The physics programs and the present status will be summarized.
Resumo:
The change of Eu3+-surroundings with the Al/B ratio varying from 4.5 to 2 and Eu/(Al + B) = 0.02, was investigated through X-ray diffraction, infrared spectra, excitation and emission spectra, and phonon sideband. The results show coexistence of the crystal phase Al18B4O33 and the amorphous phase and Eu3+ ions of the samples with the Al/B ratio from 3 to 2 are incorporated into the amorphous phase. It was also found that electron-phonon coupling strength decreases with the Al/B ratio from 3 to 2, non-radiative decay rate decreases, resulting in an increase of the Eu3+-emission intensity. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The system Al2O3-B2O3-Eu2O3, with Al/B ratio varying from 4.5 to 2 and Eu/(Al+B)=0.02, was synthesized by solid state reaction. The vibrational spectra of the system Al2O3-B2O3-Eu2O3 were investigated. It was found that no definite change in the regions of 1200 similar to 1000 cm(-1) due to the adsorption BO4 groups with decreasing Al/B ratio, indicating no Al3+ ion was substituted by Eu3+ ions and other changes revealed that there was an amorphous phase and Eu3+ ions may dope into the amorphous phase. The studies on the luminescent properties of the system Al2O3-B2O3 also show that Eu3+ ions dope into amorphous phase. The investigations on the phonon sideband of Eu3+ indicate that electron-phonon coupling strength decreases with Al/B ratio change from 3 to 2, leading to the non-radiative decay rate decreases and the Eu3+-emission intensity increase.
Resumo:
Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics
Resumo:
InGaN/GAN multiple quantum wells grown by metal-organic chemical vapor deposition were irradiated with the electron beam from a low energy accelerator. The electron irradiation induced a redshift by 50 meV in the photoluminescence spectra of the electron-irradiated InGaN/GaN quantum wells, irrespective of the exposure time to the electron beam which ranges from 10 to 1000s. The localization parameter extracted from the temperature-dependent photoluminescence spectra was found to increase in the Irradiated samples. Analysis of the intensity of the longitudinal optical phonon sidebands showed the enhancement of the exciton-phonon coupling, indicating that the excitons are more strongly localized in the irradiated InGaN wells. The change in the pholotuminescence spectra. In the irradiated InGa/GAN quantum wells were explained in terms of the increase of indium concentration in indium rich clusters induced by the electron irradiation (C) 2009 The Japan Society of Applied Physics
Resumo:
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference DeltaE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.
Resumo:
InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.
Resumo:
Electron transport through a double-quantum-dot structure with intradot and interdot Coulomb interactions is studied by a Green's function (GF) approach. The conductance is calculated by a Landauer-Buttiker formula for the interacting systems derived using the nonequilibrium Keldysh formalism and the GF's are solved by the equation-of-motion method. It is shown that the interdot-coupling dependence of the conductance peak splitting matches the recent experimental observations. Also, the breaking of the electron-hole symmetry is numerically demonstrated by the presence of the interdot repulsion. [S0163-1829(99)01640-9].
Resumo:
A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.
Resumo:
An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.
Resumo:
The magnetic behavior of Mn-doped beta-Ga2O3 is Studied from first-principles calculations within the generalized gradient approximation method. Calculations show that ferromagnetic ordering is always favorable for configurations in which two Mn ions substitute either tetrahedral or octahedral sites, and the ferromagnetic ground state is also sometimes favorable for configurations where one Mn ion substitutes a tetrahedral site and another Mn ion substitutes an octahedral site. However, the configurations of the latter case are less stable than those of the former. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The magnetic interactions in Ni-doped ZnO are calculated using GGA and GGA + U method of density functional theory. The following three cases: (i) Ni-doped ZnO, (ii) (Ni, Al)-codoped ZnO, and (iii) (Ni, Li)-codoped ZnO are studied. The ferromagnetic ordering is always favorable for the three cases within GGA method. However, the ferromagnetic state is sometimes favorable after treating within the method of GGA + U. The GGA underestimates the correlated interactions especially when the Ni ions align directly to each other. (C) 2007 Elsevier B.V. All rights reserved.