198 resultados para electron emission measurements


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser-induced fragmentation of C-60 has been studied using a time-of-flight mass spectrometric technique. The average kinetic energies of fragment ions C-n(+) (n <= 58) have been extracted from the measured full width at half maximum (FWHM) of ion beam profiles. The primary formation mechanism of small fragment ion C-n(+) (n < 30) is assumed to be a two-step fragmentation process: C60 sequential decay to unstable C-30(+) ion and the binary fission of C-30(+). Considering a second photo absorption process in the later part of laser pulse duration, good agreement is achieved between experiment and theoretical description of photoion formation. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time of flight mass spectrometric technique was used to determine the initial mean kinetic energy of small fragment ions C-n(+) (n <= 11) produced from C-60 excited by 532 nm nanosecond laser pulses. The measured kinetic energy shows little variation with the fragment mass and the laser fluence in a broad range. Based on the assumption that C-30(+) is produced predominantly by a single electron emission followed by successive C-2 evaporation from hot C-60 in the nanosecond laser field, the formation of small fragments is interpreted as the complete breakup of the unstable C-30(+) cage structure. The interpretation is consistent with the previously observed results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high performance Time-of-Flight detector has been designed and constructed for isochronous mass spectrometry at the experimental Cooler Storage Ring (CSRe) The detector has been successfully used in an experiment to measure the masses of the N approximate to Z approximate to 33 nuclides near the proton drip-line Of particular interest is the mass of As-65 A maximum detection efficiency of 70% and a time resolution of 118 +/- 8 Ps (FWHM) have been achieved in the experiment The dependence of detection efficiency and signal average pulse height (APH) on atomic number Z has been studied The potential of APH for Z identification has been discussed (C) 2010 Elsevier B V All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

高电荷态离子与固体表面相互作用的研究是目前国际上广受关注的热点研究领域之一。本论文详细介绍了在兰州重离子加速器国家实验室ECR离子源上建成的高电荷态离子表面物理实验平台;着重叙述了在实验平台上完成的高电荷态离子在固体表面引起的离子溅射和电子发射的研究。我们用初动能Ek=216~720keV的高电荷态Pb36+离子和初动能为Ek=144~288keV的Arq+(q =11~16)离子以不同入射角度(Ψ=15º~80º)作用于Nb、Si和SiO2表面,通过研究离子溅射产额与入射离子初动能、势能(电荷态)和入射角度的关系,得到了以下结论:离子溅射产额与炮弹离子的势能沉积和动能作用有关;对Ar离子,电荷态从11增加到16时,离子溅射产额是随之增长的。而对Pb36+离子,表面离子溅射产额随入射离子初动能的变化关系跟核阻止能损随入射离子初动能的变化关系是一致的,离子溅射产额与核阻止能损是线性相关的。认为高电荷态引发的表面离子溅射过程是势能沉积作用与线性级联碰撞过程协同作用的结果。我们还测量了Heq+(q=1,2, Ek=12keV~48keV),Neq+(q=2~8, Ek=18~192keV),Arq+(q=3~12, Ek=72keV)离子垂直作用于Si, W, Au表面产生的电子发射产额。得到了纯粹势能电子发射产额与入射离子势能的定量关系,势能电子产额随入射离子势能的增加而线性增加,势能每增加1eV,单离子电子发射产额增加0.0088(以初动能为42keV的Neq+入射到W表面为例)。势能电子发射增量跟靶的性质有关,W表面对势能变化的响应最剧烈,其次是Si表面。通过引入纯粹动能电子产额与电子能损的比值B分析和研究了动能电子发射,随着入射离子原子序数和初动能的增加,B因子有缓慢降低的趋势;B因子与靶材料密切相关,Au靶的B因子明显大于Si靶和W靶;我们还首次把B因子的研究扩展到高电荷态离子领域,认为B因子与入射离子的势能(电荷态)无关

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical deposition of magnesium was investigated in ethereal Grignard salt solution with tetraethylammonium bistrifluoro-methanesulfonimidate additive, using cyclic voltammetry, potentiostatic transients, and scanning electron microscope measurements. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of magnesium. From the analysis of the experimental current transients, it was shown that the magnesium deposition process was characterized as a three-dimensional nucleation. The deposited product obtained from potentiostatic reduction presented a generally uniform and dense film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vaterite-type YBO3:Eu3+ crystals with interesting flower and hedgehog fungus-like structures composed of nanosheets were obtained by controlled crystallization of Y2O3 and Eu2O3 in H3BO3 solutions under acidic hydrothermal (HT) conditions. Nanosheets of uniform thicknesses were formed by preferential crystal growth along the (100) crystallographic plane and specific three-dimensional structures were further developed through a homocentric growth mechanism. Optical emission measurements showed that the HT-grown nanosheet crystals exhibited a higher ratio of the emitted red-to-orange light ratio than crystals grown from solid-state reactions. The photoluminescence intensity and emission lifetimes were also studied as a function of the Eu3+ dopant concentration and the HT synthesis temperature. The effect of some additives: a chelating ligand, a surfactant and a polymer, on the YBO3:Eu3+ crystals morphology was also investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Isochronous Mass Spectrometry is a high accurate mass spectrometer. A secondary electrons time detector has been developed and used for mass measurements. Secondary electrons from a thin carbon foil are accelerated by ail electric field and deflected 180 degrees by a magnetic field onto a micro-channel plate. The time detector has been tested with alpha particles and a time resolution of 197 ps (FWHM) was obtained in the laboratory. A mass resolution around 8 x 10(-6) For Delta m/m was achieved by using this time detector in a pilot mass measurement experiment.