126 resultados para Small-angle x-ray scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linkam CSS450 optical shearing stage, wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering(SAXS) were used to investigate the effect of shear on crystal structure and crystallization morphology of the glass bead filled polypropylene( PP). The results indicate that the glass bead worked as nucleating agent for the glass bead filled PP, compared with pure PP it restrained the formation of beta-crystal after shear treatment. When the mean size of glass bead is smaller(4 mu m) shear rate had less effect on the formation of beta-crystal of PP obviously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The final structure of molten syndiotactic polypropylene (sPP) sheared under different conditions was investigated by synchrotron small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (WAXD) techniques to elucidate the shear effects on sPP crystalline structure. The results obtained from the WAXD show that there is no variation on crystalline form but a little difference on the orientation of the 200 reflection. The SAXS data indicate that the lamellar thickness and long period have not been affected by shear but the lamellar orientation is dependent on shear. The experimental data of sPP crystallization from sheared melt may indicate a mesophase structure that is crucial to the shear effects on the final polymer multiscale crystalline structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polystyrenc film of about 50 nm in thickness on silicon wafer was obtained by spin-coating in tetrahydrofuran solution.The film exhibits a rough surface as shown by atomic force microscopy images and ellipsometry data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of reactor blends of linear and branched polyethylenes have been prepared, in the presence of modified methylaluminoxane, using a combination of 2,6-bis[1(2,6-dimethyphenylimino) pyridyl]-cobalt(II) dichloride (1), known as an active catalyst for producing linear polyethylene, and [1,4-bis(2,6-diidopropylphenyl)] acenaphthene diimine nickel(II) dibromide (2), which is active for the production of branched polyethylene. The polymerizations were performed at various levels of catalyst feed ratio at 10 bar. The linear correlation between catalyst activity and concentration of catalyst 2 suggested that the catalysts performed independently from each other. The weight-average molecular weights ((M) over bar (w)), crystalline structures, and phase structures of the blends were investigated, using a combination of gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering techniques. It was found that the polymerization activities and MWs and crystallization rate of the polymers took decreasing tendency with the increase of the catalyst 2 ratios, while melting temperatures (T-m), crystalline temperatures (T,), and crystalline degrees took decreasing tendency. Long period was distinctly influenced by the amorphous component concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone)-based segmented polyurethanes (PCLUs) were prepared from poly(epsilon-caprolactone) diol, diisocyanates (DI), and 1,4-butanediol. The DIs used were 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluenediisocyanate (TDI), iso-phorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small-angle X-ray scattering, and dynamic mechanical analysis were employed to characterize the two-phase structures of all PCLUs. It was found that HDI- and MDI-based PCLUs had higher degree of microphase separation than did IPDI- and TDI-based PCLUs, which was primarily due to the crystallization of HDI- and MDI-based hard-segments. As a result, the HDI-based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard-segment domains during the sample deformation was responsible for the incomplete shape-recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structures and crystal form transition of the novel aryl ether ketone polymer containing meta-phenylene linkage: PEKEKK(T/I) were investigated by wide angle X-ray diffraction (WAXD), imaging plates (IPs) and small angle X-ray scattering (SAXS). The energy of activation of the decomposition reaction and degree of crystallinity of PEKEKK(T/I) were determined by WAXD and thermo-gravimetric analysis (TGA), respectively. Results obtained from WAXD and IPs show that crystal forms I and II coexist in the PEKEKK(T/I) samples isothermally cold crystallized in the temperature range from 180degreesC to 240degreesC and only form I occurs in PEKEKK(T/I) samples isothermally cold crystallized at 270degreesC. The radius of gyration (Rg), thickness of microregions with electron-density fluctuations (E) and distribution of particle sizes were investigated by SAXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of crystallization on the lamellar orientation of poly( styrene)-b-poly(L-lactide) (PS-PLLA) semicrystalline diblock copolymer in thin films has been investigated by atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In the melt state, microphase separation leads to a symmetric wetting structure with PLLA blocks located at both polymer/substrate and polymer/air interfaces. The lamellar period is equal to the long period L in bulk determined by small-angle X-ray scattering (SAXS). Symmetric wetting structure formed in the melt state provides a model structure to study the crystallization of PLLA monolayer tethered on glassy (T-c < T-g,T-PS) or rubber (T-c > T-g,T-PS) PS substrate. In both cases, it is found that the crystallization of PLLA results in a "sandwich" structure with amorphous PS layer located at both folding surfaces. For T-c <= T-g,T- PS, the crystallization induces a transition of the lamellar orientation from parallel to perpendicular to substrate in between and front of the crystals. In addition, the depletion of materials around the crystals leads to the formation of holes of 1/2 L, leaving the adsorbed monolayer exposure at the bottom of the holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the small angle X-ray scattering (SAXS) data was based upon particle characteristic function, one-dimensional electron-density correlation function and particle distribution function. The microstructure of nylon 66 with different degrees of crystallinity was studied by means of X-ray scattering method. The radius of gyration R-g, the Porod radius R-p, the thickness of crystalline region L-c the thickness of non-crystalline region L-n, the thickness of interphase region d(tr), the long period L, the semiaxises of particles (a, a, b), the distribution of the particle sizes and the scattering invariant were calculated. The results indicate that there was a significant interphase region between the crystalline region and the non-crystalline region. and its content (W-t,W-x) should not be neglected in comparison with that of crystalline region W-c,W-x. The morphology of nylon 66 prepared by isothermal crystallization at a high temperature was mainly a lamellar structure, while the spherical crystals dominated in the quenched sample. The size of the particles in the quenched sample was smaller than that of those in the isothermally crystallized sample. and the distribution of the particle sizes in the isothermally crystallized sample was wider.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimeter (DSC), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and density techniques have been used to investigate the structural parameters of the solid state of Nylon 11 annealed at different temperatures. The equilibrium heat of fusion Delta H-m(0) and equilibrium melting temperature T-m(0) were estimated to be 189.05 J g(-1) and 202.85 degrees C respectively by using the Hoffman-Weeks approach. The degree of crystallinity (W-c,W-x) ranged approximately 24-42% was calculated by WAXD and compared with those by calorimetry (W-c,W-h) and density (W-c,W-d) measurements. The radius of gyration R-g, crystalline thickness L-c, noncrystalline thickness L-a, long period L, semiaxes of the particles (a, b), electron-density difference between the crystalline and noncrystalline regions eta(c) - eta(a), and the invariant Q increased with increasing annealing temperature. The analysis of the SAXS data was based upon the particle characteristic function and the one-dimensional electron-density correlation function. An interphase region existed between the crystalline and noncrystalline region with a clear dimension of about 2 nm for semicrystalline Nylon 11. Instead of the traditional two-phase model, a three-phase model has been proposed to explain these results by means of SAXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(beta-hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small-angle X-ray scattering (SAXS). As the PMA content increases in the blends, the glass-transition temperature and cold-crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium-melting-point depression, is -0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PRE. The radial growth rates of spherulites were analyzed with the Lauritzen-Hoffman model. The spherulites of PHB were volume-filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.